matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteInfimum von Summanden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Infimum von Summanden
Infimum von Summanden < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum von Summanden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Mi 24.04.2013
Autor: marianne88

Guten Tag

Ich löse eine Aufgabe und bin mir an einem gewissen Punkt nicht sicher, ob diese Ungleichung stimmt. Ich habe eine Funktionenfolge [mm] $(f_n)$, [/mm] die positiv ist. Nun betrachte ich die Summe, für $n$ eine natürliche Zahl

[mm] $\sum_{k=n}^\infty \alpha_k f_k$ [/mm]

für [mm] $1\ge \alpha_k\ge [/mm] 0$ so dass [mm] $\sum_{k=n}^\infty \alpha_k [/mm] =1$ und nur endlich viele der [mm] $\alpha_k$'s [/mm] sind ungleich null. Ich weiss zusätzlich, dass [mm] $f_n\le g_n$ [/mm] für alle $n$. Gilt nun folgende Ungleichung?

[mm] $\sum_{k=n}\alpha_k f_k\le \inf_{k\ge n}g_k$? [/mm]

Natürlich kann ich wie folgt abschätzen: [mm] \sum_{k=n}\alpha_k f_k\le \sum_{k=n}^\infty \alpha_kg_k$ [/mm]

Nun möchte ich ja am liebsten jedes [mm] $g_k$ [/mm] durch [mm] $\inf_{k\ge n} g_k$ [/mm] abschätzen und verwenden, dass [mm] $\sum_k \alpha_k [/mm] =1$. Ich bin mir aber nicht sicher, ob der Übergnag zu [mm] $\inf_{k\ge n}g_k$ [/mm] die Ungleichung erhält? Wenn ja wieso?

Ich danke euch für die Hilfe.

Liebe Grüsse

marianne88

        
Bezug
Infimum von Summanden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Mi 24.04.2013
Autor: fred97


> Guten Tag
>  
> Ich löse eine Aufgabe und bin mir an einem gewissen Punkt
> nicht sicher, ob diese Ungleichung stimmt. Ich habe eine
> Funktionenfolge [mm](f_n)[/mm], die positiv ist. Nun betrachte ich
> die Summe, für [mm]n[/mm] eine natürliche Zahl
>  
> [mm]\sum_{k=n}^\infty \alpha_k f_k[/mm]
>  
> für [mm]1\ge \alpha_k\ge 0[/mm] so dass [mm]\sum_{k=n}^\infty \alpha_k =1[/mm]
> und nur endlich viele der [mm]\alpha_k[/mm]'s sind ungleich null.
> Ich weiss zusätzlich, dass [mm]f_n\le g_n[/mm] für alle [mm]n[/mm]. Gilt
> nun folgende Ungleichung?
>  
> [mm]\sum_{k=n}\alpha_k f_k\le \inf_{k\ge n}g_k[/mm]?
>  
> Natürlich kann ich wie folgt abschätzen:
> [mm]\sum_{k=n}\alpha_k f_k\le \sum_{k=n}^\infty \alpha_kg_k$[/mm]
>  
> Nun möchte ich ja am liebsten jedes [mm]g_k[/mm] durch [mm]\inf_{k\ge n} g_k[/mm]
> abschätzen und verwenden, dass [mm]\sum_k \alpha_k =1[/mm]. Ich bin
> mir aber nicht sicher, ob der Übergnag zu [mm]\inf_{k\ge n}g_k[/mm]
> die Ungleichung erhält?


Das ist nicht der Fall.

Nimm mal n=1 , [mm] \alpha_1=1, \alpha_k=0 [/mm] für k [mm] \ge [/mm] 2 und [mm] g_1=f_1 [/mm] und [mm] g_k [/mm] irgendwie für k [mm] \ge [/mm] 2.

Wenn nun

  

$ [mm] \sum_{k=n}\alpha_k f_k\le \inf_{k\ge n}g_k [/mm] $

gelten würde , so wäre

  (*)   [mm] f_1 \le \inf_{k\ge 1}g_k. [/mm]

Wähle nun [mm] g_k [/mm]  für k [mm] \ge [/mm] 2 geeignet, so dass (*) falsch ist.



FRED


> Wenn ja wieso?
>  
> Ich danke euch für die Hilfe.
>  
> Liebe Grüsse
>  
> marianne88


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]