matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenInfimum und Supremum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Infimum und Supremum
Infimum und Supremum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum und Supremum: Beweis
Status: (Frage) beantwortet Status 
Datum: 09:40 Do 13.11.2008
Autor: Babsi86

Aufgabe
Sei [mm] (a_{n}) n\in\IN [/mm] eine beschränkte Folge
Wir definieren eine Folge [mm] (A_{m}) m\in\IN [/mm] durch
[mm] A_{m}:= \bruch{a_{0}+a_{1}+....+a_{m}}{m+1} [/mm]

a) Beweise [mm] \limes_{n\rightarrow\infty}inf a_{n}\le\limes_{m\rightarrow\infty}inf A_{m}\le\limes_{m\rightarrow\infty}sup A_{m}\le\limes_{n\rightarrow\infty}sup a_{n} [/mm]

b) wende dies an um zu zeigen dass

[mm] \limes_{m\rightarrow\infty} \bruch{1+\bruch{1}{2}+\bruch{1}{3}+...+\bruch{1}{m}+\bruch{1}{m+1}}{m+1}=0 [/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kriege keinen Ansatz hin
Da ich nicht weiß wie die a geht kann ich dies auch nicht auf die b anwenden
Danke für eureMithilfe

        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Do 13.11.2008
Autor: angela.h.b.


> Sei [mm](a_{n}) n\in\IN[/mm] eine beschränkte Folge
>  Wir definieren eine Folge [mm](A_{m}) m\in\IN[/mm] durch
>  [mm]A_{m}:= \bruch{a_{0}+a_{1}+....+a_{m}}{m+1}[/mm]
>  
> a) Beweise [mm]\limes_{n\rightarrow\infty}inf a_{n}\le\limes_{m\rightarrow\infty}inf A_{m}\le\limes_{m\rightarrow\infty}sup A_{m}\le\limes_{n\rightarrow\infty}sup a_{n}[/mm]

>  Ich kriege keinen Ansatz hin

Hallo,

wenn man solch eine Aussage beweisen will, ist es ja in der Regel nützlich, zuvor die Aussage verstanden zu haben? Hast Du das?


Bei mir geht das oft nicht so schnell. Dann versuche ich, mich an meinen eigenen Haaren aus dem Sumpf zu ziehen:

1. Ich würde mir hier  zum Verständnis der Aussage erstmal eine beschränkte Folge ausdenken, sagen wir

    [mm] (a_n):=( [/mm] 3,4,5,3,4,5,7,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4 ... )

     Danach kann man mal ein paar Folgenglieder von [mm] A_m [/mm] aufschreiben.

2. Eigentlich sollte dieser Punkt lieber Punkt 1. sein, denn an erster Stelle muß die Klärung der verwendeten Begriffe stehen. Hier:

     Wie sind limes superior und limes inferior definiert?

3. Gibt es bei [mm] (a_n) [/mm]  limes superior und limes inferior? Wenn ja: wie sind die Werte?

4. Ist die zu beweisende Aussage auf dieses Beispiel bezogen plausibel?

5. Nun erst ist der Punkt gekommen, an welchem man übers Beweisen  nachdenken könnte.

Die Punkte 1. -4. sind Lösungsansätze, die auch bei fehlender Beweisidee möglich sind, und die Du in Zukunft machen und mitposten solltest.


Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]