matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesInfimum konvexer Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Infimum konvexer Funktionen
Infimum konvexer Funktionen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum konvexer Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Do 03.04.2008
Autor: kittycat

Aufgabe
Let f, [mm] f_{i} [/mm] : X [mm] \to \IR, [/mm] i [mm] \in [/mm] I be convex functions.
Is the infimum of two convex functions again convex?

Hallo liebe Mathefreunde,

Diese Aufgabe ist sicherlich nicht so schwer, aber irgendwie kann ich mit dem Infimum-Begriff nicht so viel anfangen.

Allgemein gilt ja für eine convexe Funktion:
[mm] \forall \lambda \in [/mm] [0,1] , [mm] \forall [/mm] x,y [mm] \in [/mm] X
[mm] f(\lambda [/mm] x + (1 - [mm] \lambda [/mm] )y  [mm] \le \lambda [/mm] f(x) + (1- [mm] \lambda)f(y) [/mm]

Infimum kenne ich jedoch nur als größte untere Schranke. Ist dann das infimum von zwei konvexen Funktionen, eine der beiden Funktionen?

*Ich stehe irgendwie auf dem Schlauch*
Kann mir da jemand weiterhelfen?

Liebe Grüße
kittycat



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Infimum konvexer Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Do 03.04.2008
Autor: Riley

Hi Kittycat,

betrachte das Beispiel:
f(x) = 1, g(x) = x

dann gilt (inf(f,g))(x) = [mm] \begin{cases} x, & \mbox{if }x \leq 1 \\ 1, & \mbox{if } x >1 \end{cases} [/mm]

In einer Skizze sieht man eigentlich schon, dass diese Funktion nicht konvex ist, aber wenn man z.B. [mm] \lambda [/mm] = [mm] \frac{1}{2}, [/mm] x = [mm] \frac{1}{2} [/mm] und y=2 wählt, bekommt man für die Konvexeigenschaft:
h( [mm] \frac{5}{4} [/mm] ) = 1 > [mm] \frac{1}{2} h(\frac{1}{2}) [/mm] + [mm] \frac{1}{2} [/mm] h(2) = [mm] \frac{3}{4}. [/mm]

Viele Grüße,
Riley

Bezug
                
Bezug
Infimum konvexer Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Do 03.04.2008
Autor: kittycat

Vielen, lieben Dank Riley!

Also zeig ich mit diesem Gegenbsp., dass das Infimum von zwei konvexen Funktionen nicht konvex ist.

Gruß
kittycat


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]