matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Infimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Infimum
Infimum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 16.05.2015
Autor: Fry

Hallo

Es gilt ja

[mm]\inf_{1\le n\le m}x_n>k \gdw x_1>k, x_2>k,...,x_m>k[/mm]

Aber gilt denn
auch

[mm]\inf_{n\in \mathbb N}x_n>k \gdw x_n>k \forall n\in\mathbb N[/mm]  ?

(Bzw falls ja,warum?)

Viele Grüße
Fry
 

        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Sa 16.05.2015
Autor: statler

Hi!

> Es gilt ja
>  
> [mm]\inf_{1\le n\le m}x_n>k \gdw x_1>k, x_2>k,...,x_m>k[/mm]

Ja, in diesem Fall ist ja das Infimum das Minimum.

>  
> Aber gilt denn
>  auch
>  
> [mm]\inf_{n\in \mathbb N}x_n>k \gdw x_n>k \forall n\in\mathbb N[/mm] 

Eher nicht! Nimm einfach [mm] x_n [/mm] = 1/n und k = 0.

Gruß aus HH
Dieter

Bezug
                
Bezug
Infimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Sa 16.05.2015
Autor: Fry

Hey Dieter,

vielen Dank für die Erhellung :)

VG
Fry

Bezug
                
Bezug
Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Mo 18.05.2015
Autor: Fry

Hallo,

wenn ich jetzt > durch [mm] "\ge" [/mm] ersetze, stimmt dann die Aussage gilt? Gilt also

$ [mm] \inf_{n\in\mathbb N}x_n\ge [/mm] t [mm] \gdw x_n\ge [/mm] t [mm] \forall [/mm] n [mm] \in \mathbb [/mm] N$

Viele Grüße
Fry

Bezug
                        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mo 18.05.2015
Autor: fred97


> Hallo,
>  
> wenn ich jetzt > durch [mm]"\ge"[/mm] ersetze, stimmt dann die
> Aussage gilt? Gilt also
>  
> [mm]\inf_{n\in\mathbb N}x_n\ge t \gdw x_n\ge t \forall n \in \mathbb N[/mm]
>  

Klar doch:

1. ist [mm] inf_{n\in\mathbb N}x_n\ge [/mm] t, so ist t [mm] \le x_n [/mm] für alle n.

2. ist t [mm] \le x_n [/mm] für alle n, so ist t eine untere Schranke von [mm] \{x_n:n \in \IN\}. [/mm] Es folgt

[mm] inf_{n\in\mathbb N}x_n\ge [/mm] t.


FRED


> Viele Grüße
>  Fry


Bezug
        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mo 18.05.2015
Autor: fred97


> Hallo
>  
> Es gilt ja
>  
> [mm]\inf_{1\le n\le m}x_n>k \gdw x_1>k, x_2>k,...,x_m>k[/mm]
>  
> Aber gilt denn
>  auch
>  
> [mm]\inf_{n\in \mathbb N}x_n>k \gdw x_n>k \forall n\in\mathbb N[/mm] 
> ?

Dieter hat sich geirrt. Die Anwort ist "ja".

Sei [mm] m=\inf_{n\in \mathbb N}x_n. [/mm] Dann ist m [mm] \le x_n [/mm] für alle n. Wegen k<m ist dann auch k< [mm] x_n [/mm] für alle n.

FRED

>  
> (Bzw falls ja,warum?)
>  
> Viele Grüße
>  Fry
>   


Bezug
                
Bezug
Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Mo 18.05.2015
Autor: Fry

Hey Fred,

danke schön!
Aber wie schaut es denn mit der Rückrichtung aus?

Da sagt doch das Beispiel von Dieter, dass es nicht funktioniert.

Vg,
Fry

Bezug
                        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mo 18.05.2015
Autor: fred97


> Hey Fred,
>  
> danke schön!
>  Aber wie schaut es denn mit der Rückrichtung aus?
>  
> Da sagt doch das Beispiel von Dieter, dass es nicht
> funktioniert.

Ja, da hast Du recht. Ich hab nicht genau hingesehen.

FRED

>  
> Vg,
>  Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]