matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktive Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Induktionsbeweise" - Induktive Mengen
Induktive Mengen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktive Mengen: Erläuterung
Status: (Frage) beantwortet Status 
Datum: 16:10 Do 25.06.2015
Autor: m8sar6l1Uu

Aufgabe
Eine Menge X wird induktiv genannt, falls [mm] \emptyset \in [/mm] X und für jedes x [mm] \in [/mm] X gilt x [mm] \cup [/mm] {x} [mm] \in [/mm] X

Ich hoffe, dass ich diese Frage richtig eingeordnet habe. Andernfalls bitte ich um Entschuldigung.

Was ich an der Definition nicht verstehe, ist x [mm] \cup [/mm] {x} [mm] \in [/mm] X.
Ich dachte der Durchschnitt zweier Mengen sei nur für Mengen definiert. Was genau bedeutet es, wenn ein Element mit einer Menge vereinigt wird?


Das soll wahrscheinlich so etwas wie: Für alle x [mm] \in \IR [/mm] gilt x+1 [mm] \in \IR [/mm] bedeuten.

        
Bezug
Induktive Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Sa 27.06.2015
Autor: hippias

Nur nebenbei: [mm] $\cup$ [/mm] bezeichnet die Vereinigung von Mengen, nicht den Durchschnitt [mm] $\cap$. [/mm]
Bezueglich Deiner Frage ist [mm] $x\in [/mm] X$ ebenfalls eine Menge: $X$ ist eine Menge von Mengen. In der axiomatischen Mengenlehre ist alles eine Menge, obwohl es wohl auch andere Sichtweisen gibt.
Jedenfalls enthaelt die Menge [mm] $x\cup\{x\}$ [/mm] neben $x$ auch alle Elemente von $x$. Deine Vermutung ist richtig, dass diese Menge als Nachfolger von $x$ interpretiert wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]