matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis einer Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Induktionsbeweis einer Summe
Induktionsbeweis einer Summe < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis einer Summe: Idee
Status: (Frage) beantwortet Status 
Datum: 08:38 Di 24.10.2006
Autor: clwoe

Aufgabe
Beweise durch Induktion für alle n:

[mm] \summe_{k=1}^{n}(2k-1)^{3}=n^{2}(2n^{2}-1) [/mm]

Hallo,

bei der obigen Aufgabe habe ich Probleme. Ich weiß zwar wie das Ergebnis aussehen soll, ist ja hier auch nicht schwer zu sehen, aber ich habe irgendwo einen Hänger. Ich schreibe mal meinen bisherigen Weg. Ich habe zwar schon unendlich viele ausprobiert, aber dieser hier scheint mir am sinnvollsten bis jetzt. Den Beweis für n=1 und die Annahme schreibe ich nicht noch extra wieder hin. Ich gehe hier gleich vom Schluss aus. Der Rest ist ja klar.

[mm] \summe_{k=1}^{n+1}(2k-1)^{3}=\summe_{k=1}^{n}(2k-1)^{3}+(2n+1)^{3} [/mm]
[mm] =n^{2}(2n^{2}-1)+(2n+1)^{3} [/mm]
Nun habe ich aus der hinteren Potenz eine rausgezogen und die binomische Formel ausgerechnet. Von dieser dann die Nullstelle berechnet und mit einer ausgeklammerten 4 wieder als Binom hingeschrieben.
Also:
[mm] =n^{2}(2n^{2}-1)+4*(n+\bruch{1}{2})^{2}(2n+1) [/mm]
[mm] =n^{2}(2n^{2}-1)+4*(n+\bruch{1}{2})^{2}*2(n+\bruch{1}{2}) [/mm]
Ich denke bis hier hin sind die Umformungen alle in Ordnung. Ich sehe auch das der vordere Term in der Klammer eine binomische Formel ist, ich habe auch schon probiert damit was anzufangen, da kommen halt dann Wurzeln drin vor und das kann ich mir nicht vorstellen, also habe ich diese MÖglichkeit wieder fallen lassen. Ich habe auch schon probiert irgendwie anders auszuklammern, aber das geht ja überhaupt nicht, denn man hat ja überhaupt keine gemeinsamen Klammern. Deshalb kam mir nur die Idee mit der Zerlegung der hinteren Potenz irgendwie in einen quadratischen Term so das ich dann doch etwas anderes geschickt ausklammern kann. Aber jetzt komme ich einfach nicht mehr weiter. Vielleicht bin ich ja auch total auf dem Holzweg!

Gruß,
clwoe


        
Bezug
Induktionsbeweis einer Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:02 Di 24.10.2006
Autor: angela.h.b.

gelöscht wg.Fehler.

Bezug
                
Bezug
Induktionsbeweis einer Summe: richtig?
Status: (Frage) beantwortet Status 
Datum: 09:16 Di 24.10.2006
Autor: clwoe

Hallo,

das kann doch gar nicht sein!

[mm] \summe_{k=1}^{n+1}(2k-1)^{3}=\summe_{k=1}^{n}(2k-1)^{3}+(2(n+1)-1)^{3} [/mm]
[mm] =\summe_{k=1}^{n}(2k-1)^{3}+(2n+2-1)^{3}=\summe_{k=1}^{n}(2k-1)^{3}+(2n+1)^{3} [/mm]

Ich verstehe nicht, wie hier ein "-" reinkommen kann!

Gruß,
clwoe


Bezug
                        
Bezug
Induktionsbeweis einer Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Di 24.10.2006
Autor: angela.h.b.


> Hallo,
>  
> das kann doch gar nicht sein!

Du hast völlig recht.
Auf dem Weg von Bildschirm auf meinen Zettel hatte sich die Aufgabe verändert. Ich überlege neu.

Gruß v. Angela

Bezug
        
Bezug
Induktionsbeweis einer Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Di 24.10.2006
Autor: angela.h.b.


> Beweise durch Induktion für alle n:
>  
> [mm]\summe_{k=1}^{n}(2k-1)^{3}=n^{2}(2n^{2}-1)[/mm]

> [mm]\summe_{k=1}^{n+1}(2k-1)^{3}=\summe_{k=1}^{n}(2k-1)^{3}+(2n+1)^{3}[/mm]
>  [mm]=n^{2}(2n^{2}-1)+(2n+1)^{3}[/mm]

Hallo,

ich würde jetzt alles Ausklammern lassen und einfach die Klammern auflösen. Dasselbe "von rückwärts" mit dem gewünschten Ergebnis, und gucken, ob's paßt. Es paßt.

=...
  .
  .
  .
[mm] =(n+1)^2(2n^2+4n+1) [/mm]
[mm] =(n+1)^2(2(n+1)^2-1) [/mm]

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]