Induktionsbeweis (Ungleichung) < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:29 Di 22.11.2005 | Autor: | kokiweb |
Hallo,
Ich habe folgendes zu zeigen:
[mm] \summe_{k=1}^{2^{n-1}}\bruch{1}{2^{n}+2k-3}\ge\bruch{1}{n}
[/mm]
Ich habe es bereits mit Abschätzen probiert, aber meine Abschätzungen waren alle zu scharf. Eine Induktion mit einer ungleichung habe ich noch nie durchgeführt und es bleiben mir nur noch ca. zwei Stunden Zeit.
Hat jemand einen Ansatz, von wo aus man weiterkommt?
Sascha
|
|
|
|
Wo ist das Problem, wenn die Abschätzungen zu scharf sind? Dann mußt du doch nur den letzten Term noch weiter nach unten durch [mm]\frac{1}{n}[/mm] abschätzen. (Ein Problem hättest du doch nur im umgekehrten Fall, nämlich wenn deine Abschätzungen zu grob wären.)
|
|
|
|