matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:47 Mi 26.10.2011
Autor: peterpan22

Aufgabe
Zeigen Sie, dass ein [mm] $N_0 \in\IN$ [/mm] existier, so dass für alle $n [mm] \ge n_0$ [/mm] gilt [mm] $n^4 [/mm] < [mm] 3^n$. [/mm]




Hallo,
bin neu hier und versuche mal mein Glück.
Ist wohl ne recht einfach Induktionsaufgabe, aber irgendwo hängt es bei mir.
Zunächst wähle ich als [mm] $n_0=8$ [/mm] (ich soll ja nur zeigen das eines existiert und nicht woher ich es bekomme).
Nun IA.: [mm] $8^4=4096<3^8=6561$ [/mm]
Nun ganz Stumpf der Induktionsschritt:
[mm] $(n+1)^4=n^4+4n^3+6n^2+4n+1<(mit [/mm] IV) < [mm] 3^n+4n^3+6n^2+4n+1< [/mm] ... [mm] <3^n*3=3^{n+1}$ [/mm]

Wo ich hin muss ist klar und es muss wohl über weitere Abschätzungen laufen, nur habe ich keine Idee wie ich aus der Summe [mm] $(4n^3+6n^2+4n+1)$ [/mm] dann den Fakto 3 bekomme. Vielleicht hat ja jemand einen Tipp für mich, wäre cool.
Peter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mi 26.10.2011
Autor: Schadowmaster

Hmm ja, an der Aufgabe durfte ich auch rumbasteln.^^
Ich würde dir raten es mal mit ein paar Wurzeln zu versuchen und dann zeigen, dass die linke Seite langsamer wächst als die rechte.
Wenn du noch keine Ableitungen benutzen darfst dann rechne die Steigung halt fein von Hand. ;)


lg

Schadow

PS: Natürlich könnte es auch mit Induktion gehen, wer weiß, aber so wie oben gehts auch.^^

Bezug
        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mi 26.10.2011
Autor: barsch

Hallo,


> Zeigen Sie, dass ein [mm]N_0 \in\IN[/mm] existier, so dass für alle
> [mm]n \ge n_0[/mm] gilt [mm]n^4 < 3^n[/mm].
>  
>
>
> Hallo,
>  bin neu hier und versuche mal mein Glück.
>  Ist wohl ne recht einfach Induktionsaufgabe, aber irgendwo
> hängt es bei mir.
>  Zunächst wähle ich als [mm]n_0=8[/mm] (ich soll ja nur zeigen das
> eines existiert und nicht woher ich es bekomme).
>  Nun IA.: [mm]8^4=4096<3^8=6561[/mm]
>  Nun ganz Stumpf der Induktionsschritt:
>  [mm](n+1)^4=n^4+4n^3+6n^2+4n+1<(mit IV) < 3^n+4n^3+6n^2+4n+1< ... <3^n*3=3^{n+1}[/mm]

habe das folgende nicht weitergedacht, nur so eine Idee:

[mm]3^n+4n^3+6n^2+4n+1< ... <3^n*3=3^{n+1}[/mm]


[mm]3^n+3^n+3^n=3*3^n=3^{n+1}[/mm][mm][/mm] - aber da verrate ich dir nichts neues [grins]

Ich würde versuchen, [mm]4*n^3[/mm] durch [mm]3^n[/mm] und [mm]6n^2+4n+1[/mm] durch [mm]3^n[/mm] abzuschätzen für [mm]n\ge{8}[/mm].

Es ist z.B. [mm]4*n^3\le{n*n^3}=n^4<3^n[/mm] für [mm]n\ge{8}[/mm] nach I.V. gilt letzte Relation.

> Wo ich hin muss ist klar und es muss wohl über weitere
> Abschätzungen laufen, nur habe ich keine Idee wie ich aus
> der Summe [mm](4n^3+6n^2+4n+1)[/mm] dann den Fakto 3 bekomme.
> Vielleicht hat ja jemand einen Tipp für mich, wäre cool.
>  Peter
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Vielleicht hilft's.

Viel Erfolg.

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]