matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Beweis
Status: (Frage) beantwortet Status 
Datum: 00:48 Di 21.07.2009
Autor: mausieux

Aufgabe
Beweisen Sie mithilfe der vollständigen Induktion, dass [mm] 3^{2^n}-1 [/mm] durch [mm] 2^{n+2} [/mm] teilbar ist.

Ich habe so begonnen:

[mm] \bruch{3^{2^n}-1}{2^{n+2}}= [/mm] a     [mm] /*2^{n+2} [/mm]

[mm] 3^{2^n}-1 [/mm] = [mm] a{2^{n+2}} [/mm]

(i)  Die Behauptung gilt für n = 1 offensichtlich.

[mm] 3^{2^1}-1 [/mm] = [mm] a{2^{1+2}} [/mm]
    8 = 8a                    /:8
    a = 1

(v)  Die Behauptung gilt bis n!

(II) Schluß von [mm] {n\rightarrow\n+1} [/mm]

[mm] 3^{2^n+1}-1 [/mm] = [mm] b{2^{{n+1}+2}} [/mm]

[mm] {(3^{2^n+1}-1)}{(3^{2^n+1}+1)} [/mm] = [mm] b{2^{{n+1}+2}} [/mm]

[mm] {(a{2^{n+2}})}{(3^{2^n+1}+1)} [/mm] = [mm] b{2^{{n+1}+2}} [/mm]

Weiter komme ich nicht, oder ich weiß schon wie es weiter geht - verstehe es aber noch nicht

Würde mir jemand helfen und Erklärungen geben????




        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Di 21.07.2009
Autor: pelzig

Induktionsschritt: [mm] $3^{2^{n+1}}-1=\left(3^{2^n}\right)^2-1=(3^{2^n}+1)\cdot(3^{2^n}-1)\stackrel{\text{I.V.}}{=}\underbrace{(3^{2^n}+1)}_{\text{gerade}}(b\cdot 2^{n+2})=\tilde{b}\cdot 2^{n+3}$. [/mm]

Gruß, Robert

Bezug
                
Bezug
Induktionsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Di 21.07.2009
Autor: mausieux

Würdest du mir denn Schritt mal bitte erklären? Kommt der nach meinem letzten bzw. knüpft er an meinen Schluss an?

Bezug
                        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Di 21.07.2009
Autor: Marcel

Hallo,

> Würdest du mir denn Schritt mal bitte erklären? Kommt der
> nach meinem letzten bzw. knüpft er an meinen Schluss an?

die Rechnung
[mm] $$3^{2^{n+1}}-1=\left(3^{2^n}\right)^2-1=(3^{2^n}+1)\cdot(3^{2^n}-1)\stackrel{\text{I.V.}}{=}\underbrace{(3^{2^n}+1)}_{\text{gerade}}(b\cdot 2^{n+2})=\tilde{b}\cdot 2^{n+3}$$ [/mm]
ergibt sich im Induktionsschritt $n [mm] \mapsto [/mm] n+1$ (beachte dabei: [mm] $3^{2^{n+1}}=3^{2*2^{n}}=\big(3^{2^n}\big)^2$): [/mm]

Hier wird vorausgesetzt, dass [mm] $3^{2^{n}}-1$ [/mm] durch [mm] $2^{n+2}$ [/mm] teilbar sei. (Wenn Du das übrigens mit [mm] $\frac{3^{2^{n}}-1}{2^{n+2}}=a$ [/mm] formulieren willst, dann solltest Du zusätzlich schreiben: Mit einem $a [mm] \in \IZ$!) [/mm]

Nun ist zu zeigen, dass - unter der obigen Voraussetzung - dann auch [mm] $3^{2^{n+1}}-1$ [/mm] ein ganzzahliges Vielfaches von [mm] $2^{(n+1)+2}=2^{n+3}$ [/mm] ist. In Deiner Formulierung:
Dass mit [mm] $b:=\frac{3^{2^{n+1}}-1}{2^{n+3}}$ [/mm] dann auch $b [mm] \in \IZ$ [/mm] gilt.

Robert hat nun (s.o.) gerechnet (anstelle von Roberts [mm] $b\,$ [/mm] sollte eher ein [mm] $a\,$ [/mm] stehen, wegen der Formulierung der I.V.; und Roberts [mm] $\tilde{b}$ [/mm] heißt bei mir dann wieder nur [mm] $b\,$): [/mm]
[mm] $$3^{2^{n+1}}-1=(3^{2^n}+1)\cdot(3^{2^n}-1)\stackrel{\text{I.V.}}{=}\underbrace{(3^{2^n}+1)}_{\text{gerade}}(a\cdot 2^{n+2})\,.$$ [/mm]

Hierbei kann man nun begründen, dass die von Robert aufgestellte Behauptung, dass [mm] $3^{2^n}+1$ [/mm] gerade ist, auch wirklich stimmt:
[mm] $3^{2^n}$ [/mm] ist als Produkt endlich vieler ungerader Zahlen (die [mm] $3\,$ [/mm] ist ja eine ungerade Zahl, und diese wird [mm] $2^n$ [/mm] Mal mit sich selbst multipliziert!) ungerade, woraus auch schon Robert's Behauptung folgt.

[mm] $(\star)$ [/mm] Daraus ergibt sich, dass [mm] $3^{2^n}+1=2*m$ [/mm] mit einem $m=m(n) [mm] \in \IZ$ [/mm] gilt.

Also:
[mm] $$3^{2^{n+1}}-1=2*m*(a*2^{n+2})$$ [/mm]
[mm] $$\gdw 3^{2^{n+1}}-1=m*(a*2^{n+3})$$ [/mm]
[mm] $$\gdw 3^{2^{n+1}}-1=(m*a)*2^{n+3}\,.$$ [/mm]

Nach I.V. war $a [mm] \in \IZ$ [/mm] und wegen [mm] $(\star)$ [/mm] ist auch $m [mm] \in \IZ$ [/mm] und somit $(m*a) [mm] \in \IZ\,.$ [/mm] Folglich ergibt sich wegen $b=m*a$ dann auch $b [mm] \in \IZ\,.$ [/mm]

Bemerkung:
Evtl. kannst Du hier auch überall [mm] $\IZ$ [/mm] durch [mm] $\IN$ [/mm] bzw. [mm] $\IN_0$ [/mm] ersetzen.

P.S.:
Um die Bezeichnungen [mm] $a\,$, $b\,$ [/mm] und [mm] $\tilde{b}$ [/mm] zu vermeiden und nicht unterschiedlich zu benutzen (Roberts [mm] $a\,$ [/mm] war wohl nur für den Fall [mm] $n=1\,$ [/mm] reserviert, sein [mm] $b\,$ [/mm] spielt die Rolle meines [mm] $a\,$'s [/mm] und sein [mm] $\tilde{b}$ [/mm] spielt die Rolle meines [mm] $b\,$'s), [/mm] kann man auch einfach sagen:
Wir betrachten die Folge [mm] $\big(a_n\big)_{n \in \IN}$ [/mm] (bei mir ist $0 [mm] \notin \IN$), [/mm] definiert durch
[mm] $$a_n:=\frac{3^{2^n}-1}{2^{n+2}}\;\;(n \in \IN)\,.$$ [/mm]

Wenn man die Aufgabe umformuliert, so hat man zu zeigen:
Dann ist [mm] $\big(a_n\big)_{n \in \IN}$ [/mm] eine Folge in [mm] $\IZ$ [/mm] (oder [mm] $\IN$ [/mm] oder [mm] $\IN_0$...), [/mm] also:
Zu zeigen wäre dann, dass für jedes $n [mm] \in \IN$ [/mm] gilt
[mm] $$a_n \in \IZ\;\;\text{(oder }\IN\text{ oder }\IN_0\ldots\text{)}.$$ [/mm]

Für [mm] $n=1\,$ [/mm] würde dann hier nicht [mm] $a\,,$ [/mm] sondern [mm] $a_1$ [/mm] stehen. Im Induktionsschritt würde man benutzen, dass nach I.V. [mm] $a_n=\frac{3^{2^n}-1}{2^{n+2}} \in \IZ$ [/mm] gelten würde, und hätte zu zeigen, dass dann auch
[mm] $$a_{n+1}=\frac{3^{2^{n+1}}-1}{2^{n+3}} \in \IZ$$ [/mm]
gelten muss.

Gruß,
Marcel

Bezug
                                
Bezug
Induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Mi 22.07.2009
Autor: mausieux

Hallo Marcel,

vielen Dank für die sehr ausführliche Beantwortung. Ich werde mir das jetzt noch mal alles genau anschauen, da ich früher mal einen anderen Lösungsweg genommen habe. Ich denke aber, dass dieser (deiner/euer) besser ist. Mein früherer Weg war mit modula usw. Nicht sehr schön.

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]