matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInduktion (Pythagoras)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Induktion (Pythagoras)
Induktion (Pythagoras) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion (Pythagoras): Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 12.06.2008
Autor: Rumba

Aufgabe
Sei (H,<.|.>) ein Prä-Hilbertraum und [mm] x_{1}, [/mm] ..., [mm] x_{n} \in [/mm] H \ {0} paarweise orthogonal. Zeigen Sie durch vollständige Induktion den Satz von Pythagoras:

[mm] \parallel \summe_{k=1}^{n} x_{k} \parallel^{2}_{H} [/mm] = [mm] \summe_{k=1}^{n} \parallel x_{k} \parallel^{2}_{H} [/mm]

Der Induktionsanfang hat mit n=1 geklappt:
[mm] \parallel \summe_{k=1}^{n} x_{1} \parallel^{2}_{H} [/mm] = [mm] \parallel x_{1} \parallel^{2}_{H} [/mm] = [mm] \summe_{k=1}^{1} \parallel x_{k} \parallel^{2}_{H} [/mm]

Also hab ich meine Induktionsvoraussetzung:
[mm] \parallel \summe_{k=1}^{n} x_{k} \parallel^{2}_{H} [/mm] = [mm] \summe_{k=1}^{n} \parallel x_{k} \parallel^{2}_{H} [/mm]

Induktionsschritt: Hier fang ich bei der rechten Seite an:
[mm] \summe_{k=1}^{n+1} \parallel x_{k} \parallel^{2}_{H} [/mm] = [mm] \summe_{k=1}^{n} \parallel x_{k} \parallel^{2}_{H} [/mm] + [mm] \parallel x_{n+1} \parallel^{2}_{H} \bruch{IV}{=} \parallel \summe_{k=1}^{n} x_{k} \parallel^{2}_{H} [/mm] + [mm] \parallel x_{n+1} \parallel^{2}_{H} [/mm] =    ...     = [mm] \parallel \summe_{k=1}^{n+1} x_{k} \parallel^{2}_{H} [/mm]

Ich weiss nicht,  wie ich die Umformung schaffe. Dass sie klappt, wird sicher mit dem "paarweise orthogonal" zusammenhängen.

Ich glaube ja folgendes stimmt: [mm] \parallel x_{k} \parallel^{2}_{H} [/mm] = [mm] [/mm] und paarweise orthogonal heisst ja [mm] [/mm] = 0 für i [mm] \not= [/mm] k

Was hilft mir das bei der Umformung?

Danke für eure Hilfe!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion (Pythagoras): Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 12.06.2008
Autor: rainerS

Hallo!

> Sei (H,<.|.>) ein Prä-Hilbertraum und [mm]x_{1},[/mm] ..., [mm]x_{n} \in[/mm]
> H \ {0} paarweise orthogonal. Zeigen Sie durch vollständige
> Induktion den Satz von Pythagoras:
>  
> [mm]\parallel \summe_{k=1}^{n} x_{k} \parallel^{2}_{H}[/mm] =
> [mm]\summe_{k=1}^{n} \parallel x_{k} \parallel^{2}_{H}[/mm]
>  Der
> Induktionsanfang hat mit n=1 geklappt:
>  [mm]\parallel \summe_{k=1}^{n} x_{1} \parallel^{2}_{H}[/mm] =
> [mm]\parallel x_{1} \parallel^{2}_{H}[/mm] = [mm]\summe_{k=1}^{1} \parallel x_{k} \parallel^{2}_{H}[/mm]
>  
> Also hab ich meine Induktionsvoraussetzung:
> [mm]\parallel \summe_{k=1}^{n} x_{k} \parallel^{2}_{H}[/mm] =
> [mm]\summe_{k=1}^{n} \parallel x_{k} \parallel^{2}_{H}[/mm]
>  
> Induktionsschritt: Hier fang ich bei der rechten Seite an:
>  [mm]\summe_{k=1}^{n+1} \parallel x_{k} \parallel^{2}_{H}[/mm] =
> [mm]\summe_{k=1}^{n} \parallel x_{k} \parallel^{2}_{H}[/mm] +
> [mm]\parallel x_{n+1} \parallel^{2}_{H} \bruch{IV}{=} \parallel \summe_{k=1}^{n} x_{k} \parallel^{2}_{H}[/mm]
> + [mm]\parallel x_{n+1} \parallel^{2}_{H}[/mm] =    ...     =
> [mm]\parallel \summe_{k=1}^{n+1} x_{k} \parallel^{2}_{H}[/mm]
>
> Ich weiss nicht,  wie ich die Umformung schaffe. Dass sie
> klappt, wird sicher mit dem "paarweise orthogonal"
> zusammenhängen.
>  
> Ich glaube ja folgendes stimmt: [mm]\parallel x_{k} \parallel^{2}_{H}[/mm]
> = [mm][/mm] und paarweise orthogonal heisst ja
> [mm][/mm] = 0 für i [mm]\not=[/mm] k

Betrachte doch

  [mm] \left\| \summe_{k=1}^{n} x_{k} \right\|^{2}_{H} = \left< \summe_{k=1}^{n} x_{k} \Biggm| \summe_{l=1}^{n} x_{l} \right> [/mm]

und

  [mm] \left\| \summe_{k=1}^{n+1} x_{k} \right\|^{2}_{H} = \left< \summe_{k=1}^{n+1} x_{k} \Biggm| \summe_{l=1}^{n+1} x_{l} \right> = \left< x_{n+1}+\summe_{k=1}^{n} x_{k} \Biggm| x_{n+1}+\summe_{l=1}^{n} x_{l} \right>[/mm]

Viele Grüße
   Rainer

Bezug
                
Bezug
Induktion (Pythagoras): Rückfrage
Status: (Frage) überfällig Status 
Datum: 20:43 Do 12.06.2008
Autor: Rumba

Danke für den Tipp, verstehe auch, dass es darum geht, dass alle Skalarprodukte mit [mm] k\not=l [/mm] Null werden und so nur noch die [mm] [/mm] Summanden bleiben. Mein Problem is, ich sehe nicht wozu man hier eine Induktion braucht, wo ich die Induktionsvoraussetzung einsetzen soll. Mit der Methode wie ich sie jetzt im Kopf hab, braucht man die Induktion gar nich, irgendwas stimmt da nich...

$ [mm] \left\| \summe_{k=1}^{n+1} x_{k} \right\|^{2}_{H} [/mm] = [mm] \left< \summe_{k=1}^{n+1} x_{k} \Biggm| \summe_{l=1}^{n+1} x_{l} \right> [/mm] = [mm] \left< x_{n+1}+\summe_{k=1}^{n} x_{k} \Biggm| x_{n+1}+\summe_{l=1}^{n} x_{l} \right> [/mm] $ = wegen Orthogonalität   =  [mm] \summe_{k=1}^{n+1} [/mm] = [mm] \summe_{k=1}^{n+1} \parallel x_{k} \parallel^{2}_{H} [/mm]


Bezug
                        
Bezug
Induktion (Pythagoras): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 14.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]