matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktion - Xn
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Induktion - Xn
Induktion - Xn < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion - Xn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Di 05.10.2010
Autor: Heatshawk

Aufgabe
Es sei [mm] x_{0} [/mm] = 0 und [mm] x_{1} [/mm] = 1
Für n [mm] \ge [/mm] 1 werde rekursiv definiert:

[mm] x_{n+1} [/mm] = [mm] 4x_{n} [/mm] - [mm] 3x_{n-1} [/mm]

Zeigen Sie, dass [mm] x_{n} [/mm] = [mm] \bruch{(3^{n}-1)}{2} \forall [/mm] n [mm] \in \IN [/mm]

Mein Ansatz:

[mm] x_{n+1} [/mm] = [mm] 4x_{n} [/mm] - [mm] 3x_{n-1} [/mm]
[mm] \gdw x_{n} [/mm] = [mm] \bruch {x_{n+1} + 3x_{n-1}}{4} [/mm]

Und jetzt mit vollständiger Induktion zeigen, dass:

[mm] \bruch {x_{n+1} + 3x_{n-1}}{4} [/mm] = [mm] \bruch{(3^{n}-1)}{2} [/mm] ist.

IA: n = 1
[mm] \bruch{x_2 + 3x_0}{4} [/mm] = [mm] \bruch{(3-1)}{2} [/mm]
[mm] \gdw x_2 [/mm] + [mm] 3x_0 [/mm] = 4
[mm] \gdw 4x_{1} [/mm] - [mm] 3x_{0} [/mm] + [mm] 3x_0 [/mm] = 4
[mm] \gdw [/mm] 4 - 3*0 +3*0 = 4
[mm] \gdw [/mm] 4 = 4

IV: Die Behauptung gilt bis n

IS: n -> n+1 :

[mm] \bruch {x_{n+2} + 3x_{n}}{4} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw \bruch {4x_{n+1} - 3x_{n} + 3x_{n}}{4} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw x_{n+1} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]    q.e.d.


Könnt ihr dem so zustimmen?


        
Bezug
Induktion - Xn: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Di 05.10.2010
Autor: schachuzipus

Hallo Andreas,

> Es sei [mm]x_{0}[/mm] = 0 und [mm]x_{1}[/mm] = 1
> Für n [mm]\ge[/mm] 1 werde rekursiv definiert:
>
> [mm]x_{n+1}[/mm] = [mm]4x_{n}[/mm] - [mm]3x_{n-1}[/mm]
>
> Zeigen Sie, dass [mm]x_{n}[/mm] = [mm]\bruch{(3^{n}-1)}{2} \forall[/mm] n
> [mm]\in \IN[/mm]
> Mein Ansatz:
>
> [mm]x_{n+1}[/mm] = [mm]4x_{n}[/mm] - [mm]3x_{n-1}[/mm]
> [mm]\gdw x_{n}[/mm] = [mm]\bruch {x_{n+1} + 3x_{n-1}}{4}[/mm]
>
> Und jetzt mit vollständiger Induktion zeigen, dass:
>
> [mm]\bruch {x_{n+1} + 3x_{n-1}}{4}[/mm] = [mm]\bruch{(3^{n}-1)}{2}[/mm] ist.
>
> IA: n = 1
> [mm]\bruch{x_2 + 3x_0}{4}[/mm] = [mm]\bruch{(3-1)}{2}[/mm]
> [mm]\gdw x_2[/mm] + [mm]3x_0[/mm] = 4
> [mm]\gdw 4x_{1}[/mm] - [mm]3x_{0}[/mm] + [mm]3x_0[/mm] = 4
> [mm]\gdw[/mm] 4 - 3*0 +3*0 = 4
> [mm]\gdw[/mm] 4 = 4 [ok]
>
> IV: Die Behauptung gilt bis n
>
> IS: n -> n+1 :
>
> [mm]\bruch {x_{n+2} + 3x_{n}}{4}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
> [mm]\gdw \bruch {4x_{n+1} - 3x_{n} + 3x_{n}}{4}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
> [mm]\gdw x_{n+1}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm] q.e.d.

Nee, was hast du hier gezeigt?

Nichts, oder? Zu Beginn und am Ende steht dasselbe und dazwischen Äquivalenzpfeile ...

Du musst ja auch irgendwo die Induktionsvoraussetzung einbauen ...

Besser im Induktionsschritt so:

IV: Sei [mm] $n\in\IN$ [/mm] beliebig, aber fest und gelte für alle [mm] $k\le [/mm] n$: [mm] $x_k=\frac{3^k-1}{2}$ [/mm]

Dann ist im Induktionsschritt zu zeigen, dass [mm] $x_{n+1}=\frac{3^{n+1}-1}{2}$ [/mm] ist.

Dazu benutze die Definition von [mm] $x_{n+1}$ [/mm]

[mm] $x_{n+1}=4x_n-3x_{n-1}$ [/mm]

Nun kannst du auf [mm] $x_n$ [/mm] und [mm] $x_{n-1}$ [/mm] jeweils die Induktionsvoraussetzung anwenden.

Mache das mal und rechne den Spaß dann schön zusammen, so dass am Ende [mm] $\frac{3^{n+1}-1}{2}$ [/mm] rauskommt


>
>
> Könnt ihr dem so zustimmen?

Dem Induktionsschritt nicht

Gruß

schachuzipus

>


Bezug
                
Bezug
Induktion - Xn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Di 05.10.2010
Autor: Heatshawk

Dann noch ein Versuch. Danke schachuzipus für deine schnellen und tollen Antworten.
Die umgekehrte Dreiecksungleichung werde ich etwas später behandeln, da ich eine Seite gefunden habe, wo eine Uni die Übungsblätter des Sommersemesters 09/10 veröffentlicht hat.
Die Ungleichung kommt sogar auch drin vor, aber erst in der 3en Woche.
Momentan bin ich noch am ersten^^


Das mit [mm] x_k [/mm] verstehe ich noch nicht ganz =/, ich hab es mal so probiert:

[mm] x_{n+1} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw 4x_n [/mm] - [mm] 3x_{n-1} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw \bruch{4(3^{n}-1)-3(3^{n-1}-1)}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw \bruch{4*3^{n}-3*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw \bruch{12*3^{n-1}-3*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw \bruch{9*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]
[mm] \gdw \bruch{3^{n+1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

So richtig?

So hätte ich es jedenfalls in der Schule aufgeschrieben.
Mir wurde jedoch oft genug gesagt, dass man da an der Uni etwas ausführlicher vorgehen muss.
Hier ein Versuch:

[mm] x_{n+1} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]    
[mm] \gdw 4x_n [/mm] - [mm] 3x_{n-1} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]  
[mm] \gdw \bruch{4(3^{n}-1)}{2} [/mm] - [mm] \bruch{3(3^{n-1}-1)}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

[mm] \gdw \bruch{4(3^{n}-1)-3(3^{n-1}-1)}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Distributivgesetz:

[mm] \gdw \bruch{4*3^{n}-4*1-(3*3^{n-1}-3*1)}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Distributivgesetz:

[mm] \gdw \bruch{4*3^{n}-4*1-3*3^{n-1}+3*1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Kommutativgesetz

[mm] \gdw \bruch{4*3^{n}-3*3^{n-1}-4*1+3*1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

[mm] 3^n [/mm] = [mm] 3^{n-1} [/mm] * 3

[mm] \gdw \bruch{4*(3^{n-1}*3)-3*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Kommutativgesetz

[mm] \gdw \bruch{4*(3*3^{n-1})-3*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Assoziativgesetz

[mm] \gdw \bruch{(4*3)*3^{n-1}-3*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

[mm] \gdw \bruch{12*3^{n-1}-3*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Distributivgesetz


[mm] \gdw \bruch{(12-3)*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]


[mm] \gdw \bruch{9*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

[mm] \gdw \bruch{3^2*3^{n-1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]


[mm] \gdw \bruch{3^{2+(n-1)}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]


[mm] \gdw \bruch{3^{n+1}-1}{2} [/mm] = [mm] \bruch{(3^{n+1}-1)}{2} [/mm]

Ist das so zu viel oder noch zu wenig?

Danke im Voraus.

Bezug
                        
Bezug
Induktion - Xn: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 05.10.2010
Autor: fred97


> Dann noch ein Versuch. Danke schachuzipus für deine
> schnellen und tollen Antworten.
>  Die umgekehrte Dreiecksungleichung werde ich etwas später
> behandeln, da ich eine Seite gefunden habe, wo eine Uni die
> Übungsblätter des Sommersemesters 09/10 veröffentlicht
> hat.
>  Die Ungleichung kommt sogar auch drin vor, aber erst in
> der 3en Woche.
>  Momentan bin ich noch am ersten^^
>  
>
> Das mit [mm]x_k[/mm] verstehe ich noch nicht ganz =/, ich hab es mal
> so probiert:
>  
> [mm]x_{n+1}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  [mm]\gdw 4x_n[/mm] - [mm]3x_{n-1}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  [mm]\gdw \bruch{4(3^{n}-1)-3(3^{n-1}-1)}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  [mm]\gdw \bruch{4*3^{n}-3*3^{n-1}-1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  [mm]\gdw \bruch{12*3^{n-1}-3*3^{n-1}-1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  [mm]\gdw \bruch{9*3^{n-1}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  [mm]\gdw \bruch{3^{n+1}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> So richtig?
>  

Ja, aber nicht schön.


> So hätte ich es jedenfalls in der Schule aufgeschrieben.
>  Mir wurde jedoch oft genug gesagt, dass man da an der Uni
> etwas ausführlicher vorgehen muss.
>  Hier ein Versuch:
>  
> [mm]x_{n+1}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]    
> [mm]\gdw 4x_n[/mm] - [mm]3x_{n-1}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]  
> [mm]\gdw \bruch{4(3^{n}-1)}{2}[/mm] - [mm]\bruch{3(3^{n-1}-1)}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> [mm]\gdw \bruch{4(3^{n}-1)-3(3^{n-1}-1)}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Distributivgesetz:
>  
> [mm]\gdw \bruch{4*3^{n}-4*1-(3*3^{n-1}-3*1)}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Distributivgesetz:
>  
> [mm]\gdw \bruch{4*3^{n}-4*1-3*3^{n-1}+3*1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Kommutativgesetz
>  
> [mm]\gdw \bruch{4*3^{n}-3*3^{n-1}-4*1+3*1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> [mm]3^n[/mm] = [mm]3^{n-1}[/mm] * 3
>  
> [mm]\gdw \bruch{4*(3^{n-1}*3)-3*3^{n-1}-1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Kommutativgesetz
>  
> [mm]\gdw \bruch{4*(3*3^{n-1})-3*3^{n-1}-1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Assoziativgesetz
>  
> [mm]\gdw \bruch{(4*3)*3^{n-1}-3*3^{n-1}-1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> [mm]\gdw \bruch{12*3^{n-1}-3*3^{n-1}-1}{2}[/mm] =
> [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Distributivgesetz
>  
>
> [mm]\gdw \bruch{(12-3)*3^{n-1}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
>
> [mm]\gdw \bruch{9*3^{n-1}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> [mm]\gdw \bruch{3^2*3^{n-1}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
>
> [mm]\gdw \bruch{3^{2+(n-1)}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
>
> [mm]\gdw \bruch{3^{n+1}-1}{2}[/mm] = [mm]\bruch{(3^{n+1}-1)}{2}[/mm]
>  
> Ist das so zu viel oder noch zu wenig?

Zu viel

Kurz , knapp und korrekt geht das so:

Mit der IV bekommt man:

   [mm] $x_{n+1}=\bruch{4(3^n-1)}{2}-\bruch{3(3^{n-1}-1)}{2}= \bruch{4*3^n-4-3^n+3}{2}= \bruch{3^{n+1}-1}{2}$ [/mm]


FRED

>  
> Danke im Voraus.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]