matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungInduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Induktion
Induktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: alle Personen ein Geschlecht?
Status: (Frage) beantwortet Status 
Datum: 16:19 Do 14.04.2005
Autor: BoomBoom

<ich habe diese Frage nirgends wo anders gestellt>

Hallo,
ich habe eine Frage zu folgender Aufgabe:



"2. Wir beweisen durch vollständige Induktion, daß alle Personen in einem Raum das gleiche Geschlecht haben. Induktionsanfang: Im Fall, daß nur eine Person im Raum ist, ist die
Behauptung offensichtlich richtig. Induktionsschritt: Wir numerieren die Personen mit 1,...,n+1. Nun verläßt Person n +1 den Raum. Nach Induktionsvoraussetzung haben
die verbleibenden Personen 1,...,n das gleiche Geschlecht. Person n + 1 kommt zurüuck, und Person 1 verläßt den Raum. Wiederum können wir die Induktionsvoraussetzung anwenden und schließen, daß die Personen 2,..., n+1 das gleiche Geschlecht haben. Nun kommt Person 1 zurüuck. Da die Personen 1, 2 und n +1 das gleiche Geschlecht haben, folgt sofort die Behauptung. Wo steckt der Fehler in diesem ”
Beweis“ einer offensichtlich falschen Behauptung?"


(Quelle: Übungsblatt Nr.1 einer Vorlesung der Uni-Osnabrück, Lineare Algebra
URL:  http://www.mathematik.uni-osnabrueck.de/lehre/linalg00/uebung.html#blaetter)


Mein versuch wäre jetzt folgendermaßen:

Man hat bei dem Induktionsschritt einen Fehler gemacht. Und zwar ist es bei "Person n + 1 kommt zurück, und Person 1 verläßt den Raum" nicht möglich die Induktionsvoraussetzung anzuwenden("Wiederum können wir die Induktionsvoraussetzung anwenden"), da es nicht die selben n Personen sind für die Vorausgesetzt wurde, dass diese das selbe Geschlecht haben. Somit kann es nicht stimmen.


Was haltet ihr von dieser Argumentation..? Ich bin mir nämlich nicht sicher..

viele liebe grüße

BoomBoom


        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Do 14.04.2005
Autor: banachella

Hallo!

Du hast recht: Der Fehler liegt im Induktionsschritt. Allerdings kann man die Induktionsvoraussetzung durchaus auf die $n$ im Raum verbleibenden Personen anwenden.
Das Problem liegt danach, nämlich beim Zusammensetzen der Behauptung: Die Personen 1 bis n haben das gleiche Geschlecht und die Personen 2 bis n+1 haben das gleiche Geschlecht. Was aber, wenn diese beiden Mengen keine Schnittmenge haben?
Und genau das ist der Fall für n=1, bzw. für 2 Personen:
Bleibt die erste Person im Raum, haben alle im Raum das gleiche Geschlecht. Tauschen sie Platz, stimmt's auch noch. Aber wenn die erste Person ein Mann ist und die zweite eine Frau, stimmt die Behauptung nicht.
Ich hoffe, dass ich es einigermaßen ordentlich erklärt habe.
Diese Aufgabe ist ziemlich bekannt. Viele Analysis-Profs bringen dieses Beispiel in einer der ersten Stunden ihres Analysis 1-Zykluses um darauf aufmerksam zu machen, wie gut man beim beweisen aufpassen muss und wie leicht man in eine Falle stolpern kann.

Gruß, banachella

Bezug
                
Bezug
Induktion: danke, habs verstanden!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Fr 15.04.2005
Autor: BoomBoom

Hallo banachella..
jetzt habe ich es verstanden.. danke für deine schnelle Antwort und noch nen schönen tag
liebe grüße
Boom Boom

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]