matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Induktion
Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Induktionsaufgabe
Status: (Frage) beantwortet Status 
Datum: 20:52 Di 21.10.2008
Autor: ohlala

Aufgabe
Zeigen sie mittels Induktion, dass für beliebige n,k in N die Gleichheit:
[mm][mm] {n+k\choose k}=\summe_{m=k-1}^{n+k-1}{m\choose k-1} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also ich brauch unbedingt hilfe und würde mich riesig freuen wenn ihr die Aufgabe genau beschreiben könntet.
vielen lieben dank jetzt schon mal
lg ohlala

        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 21.10.2008
Autor: Marcel

Hallo,

> Zeigen sie mittels Induktion, dass für beliebige n,k in N
> die Gleichheit:
>  [mm]{n+k\choose k}=\summe_{m=k-1}^{n+k-1}{m\choose k-1}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

> Also ich brauch unbedingt hilfe und würde mich riesig freuen wenn ihr die > Aufgabe genau beschreiben könntet.
> vielen lieben dank jetzt schon mal
> lg ohlala

na, etwas mußt Du schon selbst tun.

Ich kann Dir die Aufgabe mal umformulieren, vll. wird sie dann verständlicher für Dich:
Zeige, dass für jedes beliebige, aber feste $k [mm] \in \IN$ [/mm] gilt:
Für alle $n [mm] \in \IN$ [/mm] gilt:
[mm] $${n+k\choose k}=\summe_{m=k-1}^{n+k-1}{m\choose k-1}$$ [/mm]

Beweis.
Sei zunächst $k [mm] \in \IN$ [/mm] beliebig, aber fest.

Den Induktionsstart führst Du nun entweder für $n=0$ (falls bei Euch $0 [mm] \in \IN$) [/mm] oder für $n=1$ (falls bei Euch $0 [mm] \notin \IN$). [/mm]
Ich mach's mal für $n=1$ (da bei mir $0 [mm] \notin \IN$, [/mm] und ich die Notation [mm] $\IN_0$ [/mm] für [mm] $\IN_0=\IN \cup \{0\}$ [/mm] benutze):

Zu zeigen ist hier also [mm] ${1+k\choose k}\overset{!}{=}\summe_{m=k-1}^{1+k-1}{m\choose k-1}=\summe_{m=k-1}^{k}{m\choose k-1}={k-1\choose k-1}+{k\choose k-1}\,.$ [/mm]

(Notfalls müßtest Du, falls bei Euch $0 [mm] \in \IN$, [/mm] den Fall $k=0$ nochmal gesondert betrachten und danach den Induktionsbeweis wie oben für $k [mm] \in \IN$ [/mm] mit $k [mm] \ge [/mm] 1$ betrachten.)

Dass das gilt, kannst Du entweder explizit durch einsetzen Eurer Definition der Binomialkoeffizienten nachprüfen, oder aber Du schaust in Satz 2.11 von []hier. (Setze dort [mm] $n=\nu=k$ [/mm] ein.)
(Bzw. noch einfacher gehts, wenn man weiß (oder sich überlegen kann), dass [mm] ${k-1\choose k-1}=1$, ${k\choose k-1}=k$ [/mm] und [mm] ${k+1\choose k}=k+1\,.$) [/mm]

Nun kommt der Induktionsschritt $n [mm] \mapsto [/mm] n+1$:
I.V. Es gelte nun [mm] ${n+k\choose k}=\summe_{m=k-1}^{n+k-1}{m\choose k-1}$ [/mm] für (irgend) ein $n [mm] \in \IN$. [/mm]
Zu zeigen:
Dann gilt auch
[mm] ${n+1+k\choose k}\overset{!}{=}\summe_{m=k-1}^{n+1+k-1}{m\choose k-1}$ [/mm]

Satz 2.11 von oben liefert Dir nun:

[mm] $(\star)$ ${n+1+k\choose k}={(n+k)+1\choose k}\overset{\text{Satz 2.11}}{=}\blue{{n+k\choose k}}+{n+k\choose k-1}$ [/mm]

Auf den blauen Term kannst Du nun die I.V. anwenden. Danach vergleiche dies mit [mm] $\summe_{m=k-1}^{n+1+k-1}{m\choose k-1}$, [/mm] denn das soll ja am Ende bei der Rechnung in [mm] $(\star)$ [/mm] stehen.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]