matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisInduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Induktion
Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:51 Do 09.12.2004
Autor: Skipper

Hi,
ich steh total unter Zeitdruck und weiß nicht mehr wo mir der Kopf steht, vielleicht könnt ihr mir helfen.
Ich habe folgende Aufgaben zu lösen:

[mm] f(\bruch{1}{n})=2^{\bruch{1}{n}} [/mm]
(den Induktionsanfang hab ich)

[mm] f(\bruch{n}{m})=2^{\bruch{n}{m}} [/mm]

Bei folgenden Aufgaben komme ich auch nicht mehr weiter:
1. Es seien [mm] f,g:\IR\to\IR [/mm] stetige Funktionen, so dass für alle Zahlen [mm] q\in\IQ [/mm] gilt: f(q)=g(q). Dann gilt für alle [mm] x\in\IR, [/mm] dass f(x)=g(x).

2. Einen monotone Funktion [mm] f:\IR\to\IR [/mm] bestitz höchstens abzählbar viele Unstetigkeiten.

Ich hoffe ihr könnt helfen.
Vielen dank auf jeden Fall;
Skipper

        
Bezug
Induktion: Teilantwort / 1.)
Status: (Antwort) fertig Status 
Datum: 23:36 Do 09.12.2004
Autor: kuroiya

also auf die schnelle kann ich dir zum Punkt 1. n Tipp geben:

[mm] \IQ [/mm] liegt dicht in [mm] \IR [/mm] , dadurch folgt das Resultat aufgrund der Stetigkeit der Funktionen

Bezug
        
Bezug
Induktion: teil 1 und 2
Status: (Antwort) fertig Status 
Datum: 20:44 Fr 10.12.2004
Autor: Gorky

Hi!
Für Teil 1.  Also angenommen  es existiert so ein [mm] x_{0} \in \IR [/mm] so dass [mm] f(x_{0}) \not= g(x_{0}). [/mm] Da f,g stetig, so ist auch (f-g) stetig.
für alle [mm] q\in \IQ [/mm]   (f-g)(q) = 0 (nach Definition von f)
Nun sei [mm] (f-g)(x_{0}) [/mm] =a     wobei a [mm] \not=0 [/mm]
Da zwieschen zwei irrationalen Zahlen stets eine rationale Zahl liegt, liegt [mm] x_{0} [/mm] in [mm] \delta-Umgebung [/mm] von  [mm] q^{'} (q^{'}\in \IQ). [/mm] Weil (f-g) stetig ist, muss a also in der  [mm] \varepsilon-Umgebung [/mm] von (f-g)( [mm] q^{'}) [/mm] liegen. Es folgt also a=0 sein muss für alle [mm] x_{0}, [/mm] weil wenn [mm] \varepsilon [/mm] < a gilt für alle [mm] \delta [/mm] dass  | [mm] f(q^{'})-f(x_{0}) [/mm] | =  | 0-q | =a > [mm] \varepsilon [/mm] ist. (f-g) ist also nicht stetig. Hier haben wir wiederspruch! Also es folgt Behauptung.
Für Teil 2. Für Unstetigkeit gilt  [mm] \limes_{t\rightarrow\o}f(x+t)\not=\limes_{t\rightarrow\o}f(x-t) [/mm] (dass sollst du vielleicht beweisen, damitdie Aufgebe besser aussieht)
=> | [mm] \limes_{t\rightarrow\o}f(x+t)-\limes_{t\rightarrow\o}f(x-t) [/mm] | > 0
=> nach Archimedes Axiom gilt also
Es existiert n [mm] \in \IN [/mm] so dass  | [mm] \limes_{t\rightarrow\o}f(x+t)-\limes_{t\rightarrow\o}f(x-t) [/mm] | >  [mm] \bruch{1}{n} [/mm]
Wenn es unendlich viele Unstetigkeiten in [a,b] gibt und f monotn stetig (ohne Beschrenkung) ist, dann "springt" die Funktion [mm] \infty-mal [/mm] um [mm] \bruch{1}{n} [/mm] nach oben. Es folgt, dass der Funktionswert von b nicht existiert, da er eigentlich  [mm] \infty [/mm] sein musste. Da f monoton steigend ist dies ein wiederspruch zur Definition von Funktionen. Es folgt, dass in einem Intervall endlich viele Unstetigkeiten vorkommen können. Also gibt es Bijektion  [mm] \IN \to \{x_{0} | f(x_{0}) ist unstetig \}. [/mm]  Hoffe das ich hab dir bisschen weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]