matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Induktion
Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Beweisführung
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 15.11.2006
Autor: ednahubertus

Aufgabe
Beweise das für alle x,y [mm] \in \IR [/mm]
[mm] x^{n+1}-y^{n+1}= (x-y)*(x^{n}+x^{n-1}y [/mm] + [mm] x^{n-2}+.....xy^{n-1}+y^{n} [/mm]

Wir haben mit Eins bewiesen und mit Induktionsschritt +1 erweitert...

Wir haben nun ein großes Problem mit einer entsprechender Kürzung,  so dass auf beiden Seiten das gleiche stehen könnte....

        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 15.11.2006
Autor: angela.h.b.


> Beweise das für alle x,y [mm]\in \IR[/mm]
> [mm]x^{n+1}-y^{n+1}= (x-y)*(x^{n}+x^{n-1}y[/mm] +
> [mm]x^{n-2}+.....xy^{n-1}+y^{n}[/mm]

>  Wir haben mit Eins bewiesen und mit Induktionsschritt +1
> erweitert...

Hallo,

so 100-pro klar ist mir nicht, was Ihr bisher getan habt. Schreibt es nächstes Mal mit auf, man erkennt dann einfach besser, wo Denk- und sonstige Fehler stecken oder ob eigentlich alles klar ist, und nur ein kleines rechentechnisches Problem vorliegt.

Ihr solltet gezeigt haben, daß die Aussage für n=1 gilt, das meinst Du vielleicht.

Dann ist unter der Voraussetzung, daß
[mm]x^{n+1}-y^{n+1}= (x-y)*(x^{n}+x^{n-1}y[/mm] + [mm]x^{n-2}y^2+.....xy^{n-1}+y^{n})[/mm] für alle n [mm] \in \IN [/mm] richtig ist, zu zeigen, daß die Aussage auch für n+1 gilt.

Also
Induktionsschluß:
zu zeigen : Es ist [mm]x^{n+2}-y^{n+2}= (x-y)*(x^{n+1}+x^{n}y[/mm] + [mm]x^{n-1}y^2+x^{n-2}y^3.....xy^{n}+y^{n+1})[/mm] für alle n [mm] \in \IN [/mm]

Irgendwie habe ich den Verdacht, daß Ihr diese Gleichung genommen habt und an beiden Seiten rumgemuckelt - so geht das nicht! Man startet mit einer Seite und formt unter Zuhilfenahme der I.V. so lange um, bis am Ende die andere Seite dasteht.
Hier finde ich es viel einfacher, mit der rechten Seite zu beginnen.

[mm] (x-y)*(x^{n+1}+x^{n}y+x^{n-1}y^2+x^{n-2}y^3.....xy^{n}+y^{n+1}) [/mm]

=     ???      (nun schaue ich scharf drauf und versuche, in die Nähe der I.V. zu kommen)

= [mm] (x-y)(x*(x^{n}+x^{n-1}y+x^{n-2}y^2+x^{n-3}y^3.....y^{n})+y^{n+1}) [/mm]

=...

Nun muß man die I.V. einsetzen und zu Ende rechnen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]