matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIndices aufloesbarer Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Indices aufloesbarer Gruppen
Indices aufloesbarer Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Indices aufloesbarer Gruppen: Tip
Status: (Frage) überfällig Status 
Datum: 08:47 Do 17.11.2011
Autor: hippias

Aufgabe
Es sei $G$ eine endliche, aufloesbare Gruppe mit [mm] $\Phi(G)= [/mm] 1$ und sei [mm] $M\leq [/mm] G$ maximal. Dann gibt es zu jedem [mm] $U\leq [/mm] M$ ein [mm] $X\leq [/mm] G$ mit $|M:U|= |G:X|$.

Ich sehe die Behauptung nur in Spezialfaellen ein (z.B. U= M, U=1), sehe jedoch nicht, wie ich das als Induktionsanfang nutzen koennte. Den einzigen Nutzen von [mm] $\Phi(G)=1$, [/mm] der mir hier sinnvoll erscheint, ist die Existenz einer maximalen Untergruppe, die nicht $U$ enthaelt, wenn $U>1$. Ich vermute auch stark, dass man die Existenz von Hall-Untergruppen benutzen muesste, aber ich weiss nicht richtig, wie.

Also: wie kann man die Behauptung zeigen?

Ich habe die Frage sonst nirgends im Internet gestellt.

        
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Fr 18.11.2011
Autor: felixf

Moin,

> Es sei [mm]G[/mm] eine endliche, aufloesbare Gruppe mit [mm]\Phi(G)= 1[/mm]
> und sei [mm]M\leq G[/mm] maximal. Dann gibt es zu jedem [mm]U\leq M[/mm] ein
> [mm]X\leq G[/mm] mit [mm]|M:U|= |G:X|[/mm].

was genau ist denn [mm] $\Phi(G)$? [/mm]

LG Felix


Bezug
                
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 So 20.11.2011
Autor: hippias

[mm] $\Phi(G)$ [/mm] ist der Durchschnitt aller maximalen Untergruppen der Gruppe $G$.

Bezug
                        
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:26 Mo 21.11.2011
Autor: felixf

Moin!

> [mm]\Phi(G)[/mm] ist der Durchschnitt aller maximalen Untergruppen
> der Gruppe [mm]G[/mm].

Hmm. Stimmt die Aufgabe ueberhaupt?

Was ist, wenn ich $G = [mm] A_4$ [/mm] nehme? Dann hat $G$ 12 Elemente und ist aufloesbar. Da $G$ keine Untergruppe der Ordnung 6 hat, muessen alle Untergruppen die Ordnungen 1, 2, 3, 4, 12 haben. Maximale Untergruppen haben also die Ordnung 3 und 4 (2 geht nicht wegen Sylow). Wenn man also den Schnitt aller maximalen Untergruppen nimmt, kann dieser nur Elemente der Ordnung 1 enthalten, womit [mm] $\Phi(G) [/mm] = 1$ ist.

Sei nun $M$ eine vierelementige Untergruppe von $G$. Diese ist maximal, und es gibt ein $U [mm] \le [/mm] M$ mit $|M:U| = 2$. Wenn die Aufgabe stimmen wuerde, muesste es ein $X [mm] \le [/mm] G$ mit $|G:X| = |M:U| = 2$ geben - was aber nicht geht, da $G$ keine Untergruppe der Ordnung 6 hat.

Oder habe ich etwas uebersehen?

LG Felix


Bezug
                                
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Mo 21.11.2011
Autor: hippias

Danke fuer das Gegenbeispiel! Es ist insofern beruhigend, als dass mir der Beweis dieser Behauptung schwergefallen ist, andererseits habe ich eben diese benutzt,um etwas anderes zu zeigen. Allerdings wuesste ich gerne, wie die Bedingungen abgeaendert werden muessten, damit die Schlussfolgerung stimmt, denn ich vermute da ist nur ein kleiner Fehler in der Formulierung. Beim ersten Lesen, hatte ich mich verlesen und wollte die Existenz einer Untergruppe, deren Ordnung gleich dem Index ist, nachweisen, aber das ist ja auch verkehrt.

Bezug
        
Bezug
Indices aufloesbarer Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 19.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]