matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenImplizites Funktionentheorem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizites Funktionentheorem
Implizites Funktionentheorem < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizites Funktionentheorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Fr 04.06.2010
Autor: AbraxasRishi

Hallo!

Das implizite F.T. besagt ja im Groben, dass eine stetig diffbare Funktion in einer Umgebung eines Punktes auflösbar ist, wenn der Punkt die Gleichung erfüllt und die Ableitung nach y im Punkt invertierbar ist. Meine 1. Frage ist, warum stetig diffbar? Würde nicht stetig und stetig partiell nach y diffbar reichen? Ich habe im Beweis nicht gesehen dass von der stetigen Diffbarkeit nach x gebrauch gemacht wurde.

Außerdem kommt aus dem Beweis nicht ganz rüber wozu ich die Stetigkeit und die partielle stetige Diffbarkeit nach y anschaulich benötige. Es wäre hilfreich ein Beispiel zu finden wo alle Bedingungen außer eine der eben genannten erfüllt sind und die Funktion nicht auflösbar ist. Könnte mir dabei jemand helfen?

Danke!

Angelika

        
Bezug
Implizites Funktionentheorem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Fr 04.06.2010
Autor: rainerS

Hallo Angelika!

> Das implizite F.T. besagt ja im Groben, dass eine stetig
> diffbare Funktion in einer Umgebung eines Punktes
> auflösbar ist, wenn der Punkt die Gleichung erfüllt und
> die Ableitung nach y im Punkt invertierbar ist. Meine 1.
> Frage ist, warum stetig diffbar? Würde nicht stetig und
> stetig partiell nach y diffbar reichen? Ich habe im Beweis
> nicht gesehen dass von der stetigen Diffbarkeit nach x
> gebrauch gemacht wurde.
>
> Außerdem kommt aus dem Beweis nicht ganz rüber wozu ich
> die Stetigkeit und die partielle stetige Diffbarkeit nach y
> anschaulich benötige. Es wäre hilfreich ein Beispiel zu
> finden wo alle Bedingungen außer eine der eben genannten
> erfüllt sind und die Funktion nicht auflösbar ist.
> Könnte mir dabei jemand helfen?

Ein ganz einfaches Beispiel, das die Voraussetzungen nicht erfüllt: die Funktion

[mm]f(x,y) = |x| -|y| = 0[/mm] .

Die Punkte, die die Gleichung erfüllen, liegen auf den Winkelhalbierenden in allen Quadranten, inklusive des Punktes $(0,0)$ .

Im Punkt $(0,0)$ kannst du die Gleichung nicht nach y auflösen: zwar gehört zu x=0 genau der eine Punkt y=0, aber sobald du eine Umgebung betrachtest, gibt es zu jedem x zwei mögliche Werte von y.

Vergleiche das mit anderen Funktionen wie

  [mm] f(x,y) = x-y [/mm]  (Gerade)

bei der du im Punkt $(0,0)$ auflösen kannst.

(NACHTRAG: f stetig partiell differenzierbar impliziert f total differenzierbar und damit f stetig!)

  Viele Grüße
    Rainer

Bezug
                
Bezug
Implizites Funktionentheorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Do 10.06.2010
Autor: AbraxasRishi

Hallo nochmal!

Danke für dein Bsp.! Allerdings sind da mehrere Voraussetzungen nicht erfüllt, es fehlt nicht nur die stetige partielle Diffbarkeit nach y (oder die Stetigkeit).

Auch ist die Frage offen geblieben, ob denn nicht die stetige partielle Diffbarkeit nach y und die Stetigkeit anstelle der stetigen Diffbarkeit ausreichen würden, und warum nicht.

Gruß

Angelika

Bezug
                        
Bezug
Implizites Funktionentheorem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 12.06.2010
Autor: rainerS

Hallo Angelika!

> Danke für dein Bsp.! Allerdings sind da mehrere
> Voraussetzungen nicht erfüllt, es fehlt nicht nur die
> stetige partielle Diffbarkeit nach y (oder die Stetigkeit).

Was fehlt denn noch?

> Auch ist die Frage offen geblieben, ob denn nicht die
> stetige partielle Diffbarkeit nach y und die Stetigkeit
> anstelle der stetigen Diffbarkeit ausreichen würden, und
> warum nicht.

In der Ableitung der Funktion g, die $F(x,g(y))=0$ auföst, stehen doch sowohl die Matrix der partiellen Ableitungen nach x wie auch die der part. Abl. nach y. Du brauchst die partielle Differenzierbarkeit nach x, sonst kannst du die Ableitung von g nicht hinschreiben.

Um welche Version des Satzes über implizite Funktionen geht es denn hier, und um welchen Beweis? Ich glaube, wir reden ein wenig aneinander vorbei.

Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]