Implizites Differenzieren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 10:13 Sa 12.06.2010 | Autor: | Stoeckchen2 |
Guten Morgen,
ich habe eine allgemeine Frage und eine konkrete Frage zum impliziten differenzieren. Zunächst die allgemeine:
Sind die folgenden Annahmen richtig?
Beim impliziten differenzieren habe ich eine Gleichung entweder in expliziter oder in impliziter Form gegeben. Bei der impliziten Form steht auf einer der beiden Seiten der Gleichung die Null. Bei der expliziten ist dies nicht der Fall. Eine explizit gegebene Gleichung muss zunächst in die implizite Form umgewandelt werden. Anschließend leitete man die linke und recht Seite ab und stellt die Gleichung so um, sodass auf der linken Seite zum Beispiel [mm] y^{'} [/mm] steht und auf der rechten Seite ein Term. Dann löst man die Ausgangsgleichung nach einer bestimmten Variable auf und nutzt diese Gleichung um eine Variable "wegzusubstituieren".
Jetzt zu einer konkreten Aufgabe:
g(x, y) = [mm] x^{2}y [/mm] + 1 + [mm] xy^{2} [/mm] + ln(x) = 0
Diese Gleichung ist schon in impliziter Form. Ich kann also linke und rechte Seite ableiten. Leider erhalte ich nach dem Ableiten auf der linken Seite einen anderen Ausdruck als die Musterlösung und ich kann mir nicht erklären, wie man auf die Musterlösung kommt. Hier ist meine Lösung:
[mm] \frac{d}{dx}g(x,y) [/mm] = 2xy + [mm] x^{2}y^{'} [/mm] + 0 + [mm] 1y^{2} [/mm] + x2y + [mm] \frac{1}{x} [/mm] = 0
Musterlösung:
2xy + [mm] y^{2} [/mm] + [mm] \frac{1}{x} [/mm] + [mm] (x^{2} [/mm] + [mm] 2xy)y^{'} [/mm] = 0
Ist meine Lösung falsch? Wie komme ich auf die Musterlösung?
Vielen Dank!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|