matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenImplizite funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite funktion
Implizite funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite funktion: Implizite funktion1
Status: (Frage) überfällig Status 
Datum: 19:07 Di 23.06.2009
Autor: tony1v

Aufgabe
Sei f(x, y) := (x − [mm] y)^2. [/mm] Zeigen Sie, dass der Satz ¨uber implizite Funktionen nicht auf die
Gleichung f(x, y) = 0 anwendbar ist, dass die Gleichung aber dennoch nach y auflösbar
ist.
b) Sei [mm] B\subset R^p [/mm] × [mm] R^n [/mm] offen, F : B [mm] \to R^n [/mm] stetig differenzierbar und g : [mm] U\to R^n [/mm] eine stetige
Auflösung der Gleichung F(x, y) = 0 in folgendem Sinne:
1. {(u, g(u)) : u [mm] \in [/mm] U} [mm] \subsetB. [/mm]
2. F(u, g(u)) [mm] \equiv0 [/mm] auf U.
3 [mm] \partial F/\partial [/mm] y (u, g(u)) ist für alle [mm] u\in [/mm] U regulär.
Zeigen Sie, dass g dann stetig differenzierbar ist.
Hinweis: Benutzen Sie den Satz  über implizite Funktionen und die Tatsache, dass das Urbild offener
Mengen unter g wieder offen ist.
c) Sei g(x, y) := (x − y)2 − 1. Zeigen Sie, dass es hier sogar eine unstetige Auflösung der
Gleichung g(x, y) = 0 im Sinne von (b) gibt.

Hallo zusamen

die a) habe ich schon gemacht

die b) weiss ich echt nicht wie kann ich das machen
kann mir bitte jemanden dabei helfen

da ich die b nicht gemacht habe habe ich die c noch nicht gemacht

vielen Dank

        
Bezug
Implizite funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Di 23.06.2009
Autor: tony1v

die C habe ich auch gemacht mir bleit jetzt nur die B
kann mir jemand helfen bitte

Bezug
        
Bezug
Implizite funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 26.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]