matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisImplizite Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Implizite Funktion
Implizite Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:28 Fr 08.10.2004
Autor: eini

Hallo meine lieben Mathematiker!

Erst mal einen lieben Dank an Marc und Julius für die Lösungen meiner Fragen und Lösungshinweise, denen werde ich baldigst nachgehen und hier veröffentlichen.
Hätte heute 2 Fragen, beide werde ich mit meiner "Lösung" versehen, die zumindest bei der einen vermutlich falsch sein wird...
Die andere stelle ich gleich im LinA-Forum.

Also:

1.) [mm] e^{xyz} [/mm] = 3xyz definiert in einer Umgebung des Punktes (x,y,z) implizit
eine Funktion z=f(x,y) . Welchen Wert hat [mm] f_{x}'(x,y) [/mm] ? ( also die partielle Ableitung nach x ..., richtig? )

Also meine Lösung lautet:

Da ja [mm] z_{x}' [/mm] = - [mm] \bruch{F_{x}'}{F_{z}'} [/mm] , wenn F - wohl !? - die obige Gleichung darstellt, gilt also hier :

[mm] z_{x}' [/mm] = - [mm] \bruch{yze^{xyz}-3yz}{xye^{xyz}-3xy} [/mm]   und das ergibt dann
           = - [mm] \bruch{z}{x} [/mm]

So, ist das überhaupt so der richtige Rechenweg?
Oder hab´ ich vielleicht was ganz anderes berechnet? Hilfe :-) ...
Ich kenne die Lösung nicht, meine mich aber erinnern zu können, daß eine Zahl herauskommt ( es standen - glaube ich - mehrere Zahlen zur Auswahl ). Oder hätten dafür die Koordinaten des Punktes (x,y,z) gegeben
sein müssen? Es klingt schon wieder mächtiges mathematisches Unverständnis heraus, gell :-) ?
Und - wenn nach einem Wert in einer Aufgabenstellung gefragt wird, ist doch immer eine Zahl gemeint, oder? Evl. habe ich ja auch nur die Koordinaten nicht mit abgeschrieben, ist aber eher unwahrscheinlich...

Vielen Dank :-) , nächste - ganz einfache - folgt gleich im anderen Board!

eini

        
Bezug
Implizite Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Fr 08.10.2004
Autor: Julius

Lieber eini!

> 1.) [mm]e^{xyz}[/mm] = 3xyz definiert in einer Umgebung des Punktes
> (x,y,z) implizit
>  eine Funktion z=f(x,y) . Welchen Wert hat [mm]f_{x}'(x,y)[/mm] ? (
> also die partielle Ableitung nach x ..., richtig? )

[ok]
  

> Also meine Lösung lautet:
>  
> Da ja [mm]z_{x}'[/mm] = - [mm]\bruch{F_{x}'}{F_{z}'}[/mm] , wenn F - wohl !?
> - die obige Gleichung darstellt, gilt also hier :
>  
> [mm]z_{x}'[/mm] = - [mm]\bruch{yze^{xyz}-3yz}{xye^{xyz}-3xy}[/mm]   und das
> ergibt dann
>             = - [mm]\bruch{z}{x} [/mm]
>  
> So, ist das überhaupt so der richtige Rechenweg?

[ok]

>  Oder hab´ ich vielleicht was ganz anderes berechnet? Hilfe
> :-) ...
>  Ich kenne die Lösung nicht, meine mich aber erinnern zu
> können, daß eine Zahl herauskommt ( es standen - glaube ich
> - mehrere Zahlen zur Auswahl ).

Käme mir seltsam vor; denn wie du schon meintest, dann hätten Koordinaten angegeben sein müssen.

Hier noch mal eine Alternativlösung, ohne irgenwelche Formeln:

Aus

[mm] $e^{xyz} [/mm] - 3xyz =0$

folgt:

$(yz + [mm] xyz_x) e^{xyz} [/mm] - 3yz - [mm] 3xyz_x [/mm] = 0$.

Wir bringen die [mm] $z_x$ [/mm] auf eine Seite

[mm] $yze^{xyz} [/mm] - 3yz = [mm] 3xyz_x [/mm] - [mm] xyz_x e^{xyz}$ [/mm]

und erhalten:

[mm] $z_x =\frac{ yze^{xyz} - 3yz }{3xy - xy e^{xyz}} [/mm] = - [mm] \frac{z}{x}$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]