matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIdentitätssatz für Potenzreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Identitätssatz für Potenzreihe
Identitätssatz für Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identitätssatz für Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Mo 04.08.2014
Autor: Mathe-Lily

Aufgabe
Es sei [mm] R(z)=\summe_{n=0}^{\infty} a_{n}z^{n} [/mm] eine konvergente, komplexe Potenzreihe. Wenn es eine Nullfolge [mm] (z_{n})_{n} [/mm] in [mm] B_{\rho} [/mm] ohne 0 gibt, sodass [mm] R(z_{n})=0 [/mm]    [mm] \forall n [/mm], dann folgt bereits: [mm] R(z)=0 [/mm] , d.h. [mm] a_{n}=0 [/mm]    [mm] \forall n [/mm].

Folgerung:
Wenn zwei Potenzreihen auf einer Menge A mit Häufungspunkt 0 übereinstimmen, sind sie gleich.

Hallo!
Ich hänge beim Beweis zu diesem Satz.

Man folgert zuerst aus der Konvergenz von R, dass [mm] \rho >0 [/mm] und daher [mm] limsup_{n \to \infty} \wurzel[n]{|a_{n}|} < \infty [/mm]. Daher existiert ein C mit [mm] |a_{n}| \le C^{n} [/mm]    [mm] \forall n [/mm].

Wir nehmen an, dass [mm] R(z) \not= 0 [/mm], dann exisitert ein [mm] n_{0} \ge 0 [/mm] mit [mm] a_{n_{0}} \not= 0 [/mm] und [mm] a_{0}=...=a_{n_{0}}=0 [/mm].

Als nächster Schritt wird abgeschätzt:
[mm] |R(z)| \ge |a_{n_{0}}z^{n_{0}}| - \summe_{n=n_{0}+1}^{ \infty} |a_{n}z^{n}| [/mm]

Hier verstehe ich nicht ganz, warum auf der rechten Seite nicht noch einmal Betragsstriche außenrum gehören, denn ich habe mir überlegt:

[mm] |R(z)| =| \summe_{n=0}^{n_{0}-1} a_{n}z^{n} + a_{n_{0}}z^{n_{0}} + \summe_{n=n_{0}+1}^{ \infty} a_{n}z^{n}| = |a_{n_{0}}z^{n_{0}} + \summe_{n=n_{0}+1}^{ \infty} a_{n}z^{n}| \ge | |a_{n_{0}}z^{n_{0}} | - | \summe_{n=n_{0}+1}^{ \infty} a_{n}z^{n}| \ge | |a_{n_{0}}z^{n_{0}} | - | - \summe_{n=n_{0}+1}^{ \infty} |a_{n}z^{n}| | = | |a_{n_{0}}z^{n_{0}} | - \summe_{n=n_{0}+1}^{ \infty} |a_{n}z^{n}| | [/mm]

Was übersehe ich?
Kann mir hier jemand helfen? Das wäre super!

Grüße, Lily

        
Bezug
Identitätssatz für Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 04.08.2014
Autor: fred97

Die umgekehtre Dreiecksungleichung lautet:

$| [mm] \quad [/mm] |z|-|w| [mm] \quad [/mm] | [mm] \le [/mm] |z+w|$

Aus ihr folgt natürlich auch

  [mm] $|z|-|w|\le [/mm] |z+w|$,

denn  [mm] $|z|-|w|\le| \quad [/mm] |z|-|w| [mm] \quad [/mm] |$

FRED

Bezug
                
Bezug
Identitätssatz für Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Mo 04.08.2014
Autor: Mathe-Lily

Autsch, stimmt ^^

Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]