matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIdee
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Idee
Idee < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Idee: Integral
Status: (Frage) beantwortet Status 
Datum: 18:19 Mo 19.01.2015
Autor: Marie886

Aufgabe
Berechnen Sie das Volumen jenes Körpers, der von den Flächen x=1, x=4, y=4, y=9, z=0, z=  [mm] \wurzel{\bruch{x}{y}} [/mm]

Hallo,

wenn ich [mm] \wurzel{\bruch{x}{y}} [/mm] nach dy integrieren will kommt doch:  [mm] \wurzel{x}*y [/mm] * [mm] 2y^1^/^2 [/mm] heraus oder?
  

LG,
Marie886

        
Bezug
Idee: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Mo 19.01.2015
Autor: hanspeter.schmid


> Berechnen Sie das Volumen jenes Körpers, der von den
> Flächen x=1, x=4, y=4, y=9, z=0, z=  
> [mm]\wurzel{\bruch{x}{y}}[/mm]
>  Hallo,
>  
> wenn ich [mm]\wurzel{\bruch{x}{y}}[/mm] nach dy integrieren will
> kommt doch:  [mm]\wurzel{x}*y[/mm] * [mm]2y^1^/^2[/mm] heraus oder?

Fast ... es ist  [mm]\wurzel{x}*y\cdot 2y^{-1/2}[/mm]

Und dann kannst Du vereinfachen ...

Bezug
                
Bezug
Idee: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Mo 19.01.2015
Autor: Marie886

verstehe ich nicht so ganz, denn:

ich arbeite mit: [mm] \int x^n [/mm] dx=  [mm] \bruch{x^n^+^1}{n+1} [/mm]

[mm] \int \wurzel{\bruch{x}{y}} [/mm] dy= [mm] \int \wurzel{x}*\bruch{1}{\wurzel{y}} [/mm] dy= [mm] \int \wurzel{x}*y^-^\bruch{1}{2}= \wurzel{x}*y*\int y^-^\bruch{1}{2}= \wurzel{x}*y*\bruch{y^-^\bruch{1}{2}^+^\bruch{2}{2}}{-\bruch{1}{2}+\bruch{1}{2}}= \wurzel{x}*y*\bruch{y^\bruch{1}{2}}{\bruch{1}{2}} [/mm] = [mm] \wurzel{x}*y*\bruch{2y^\bruch{1}{2}}{1}= \wurzel{x}*y*2y^\bruch{1}{2} [/mm]

wo liegt denn der Fehler?

LG,
Marie886

Bezug
                        
Bezug
Idee: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mo 19.01.2015
Autor: Gonozal_IX

Hiho,

erstmal solltest du dir angewöhnen, dein "dy" immer sauber mitzuziehen.
Sonst will das niemand lesen, oder der Korrektor macht dir ein schönes dickes "F" dran.

Dann:

> [mm]\int \wurzel{\bruch{x}{y}}[/mm] dy= [mm]\int \wurzel{x}*\bruch{1}{\wurzel{y}}[/mm] dy= [mm]\int \wurzel{x}*y^-^\bruch{1}{2}= \wurzel{x}*y*\int y^-^\bruch{1}{2}[/mm]

Wo kommt denn dein y vor dem Integral plötzlich her?

Gruß,
Gono

Bezug
                                
Bezug
Idee: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mo 19.01.2015
Autor: Marie886

vielleicht habe ich das falsch dargestellt, denn ich habe die [mm] \wurzel{x} [/mm] nach dy inegriert und dann alles vor das Integral gezogen...

Bezug
                                        
Bezug
Idee: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mo 19.01.2015
Autor: Gonozal_IX

Hiho,

das [mm] \sqrt{x} [/mm] ist bei der Integration nach y wie eine Konstante zu behandeln, d.h. das wird einfach vor das Integral gezogen.
Da wird nichts integriert.

Es gilt also: [mm] $\integral \sqrt{x} y^{-\bruch{1}{2}} [/mm] dy = [mm] \sqrt{x} \integral y^{-\bruch{1}{2}} [/mm] dy$

Gruß,
Gono

Bezug
                                
Bezug
Idee: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Mo 19.01.2015
Autor: Marie886

Habe das damit gemeint:


[mm] \int \wurzel{\bruch{x}{y}} [/mm]  dy= [mm] \int \wurzel{x}\cdot{}\bruch{1}{\wurzel{y}} [/mm]  dy=  [mm] \int \wurzel{x}\cdot{}y^-^\bruch{1}{2} [/mm] dy= [mm] \wurzel{x}*y*\bruch{y^-\bruch{1}{2}^+\bruch{2}{2}}{\bruch{1}{2}+\bruch{2}{2}}= \wurzel{x}*y*2y^\bruch{1}{2} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]