matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenIdeale Restklassenring Z/pZ
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Ideale Restklassenring Z/pZ
Ideale Restklassenring Z/pZ < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale Restklassenring Z/pZ: Idee
Status: (Frage) beantwortet Status 
Datum: 11:35 So 11.11.2012
Autor: grafzahl123

Aufgabe
Sei p eine Primzahl. Bestimmen sie alle Ideale in [mm] \IZ \setminus p\IZ [/mm]

Ich hab mir n paar Beispiele: [mm] \IZ \setminus 3\IZ, \IZ \setminus 5\IZ, \IZ \setminus 7\IZ [/mm] genommen und mal geprüft was die ideale sind.
dabei kam raus, dass nur die trivialen Ideale existieren (Null und der gesamte restklassenring)
dann muss man das ja noch irgendwie beweisen.
ich hab mir überlegt, dass ja dann gelten muss:
es exist. ein a [mm] \in [/mm] Ideal geben muss für das gilt:
ggt(a,p)=1 => es exist. x,y [mm] \in \IZ: [/mm] ax+py=1

so weit so gut, aber wie mach ich jetzt weiter. oder ist der ansatz schon murks?

Würde mich über Hilfe sehr freuen.

Schöne Grüße,
Grafzahl123

        
Bezug
Ideale Restklassenring Z/pZ: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 So 11.11.2012
Autor: wieschoo

Moin
> Sei p eine Primzahl. Bestimmen sie alle Ideale in [mm]\IZ \setminus p\IZ[/mm]
>  
> Ich hab mir n paar Beispiele: [mm]\IZ \setminus 3\IZ, \IZ \setminus 5\IZ, \IZ \setminus 7\IZ[/mm]
> genommen und mal geprüft was die ideale sind.
>  dabei kam raus, dass nur die trivialen Ideale existieren
> (Null und der gesamte restklassenring)
>  dann muss man das ja noch irgendwie beweisen.

Genau! Auch die Idee Beispiele erst einmal zu prüfen ist vorbildlich.

> ich hab mir überlegt, dass ja dann gelten muss:
>  es exist. ein a [mm]\in[/mm] Ideal geben muss für das gilt:
>  ggt(a,p)=1 => es exist. x,y [mm]\in \IZ:[/mm] ax+py=1

Besser: ein Ideal muss eine additive Untergruppe sein. Da [mm] $\IZ/p\IZ$ [/mm] genau p Elemente enthält, kann dir Lagrange sagen, wie viele Elemente eine Untergruppe enthalten kann. Im Prinzip steht es ja schon bei ggT(a,p)=1.

>  
> so weit so gut, aber wie mach ich jetzt weiter. oder ist
> der ansatz schon murks?

Versuche den richtigen Schluss aus ggT(a,p)=1 zu ziehen und du bist fertig.

>  
> Würde mich über Hilfe sehr freuen.
>  
> Schöne Grüße,
>  Grafzahl123

wieschoo

Bezug
                
Bezug
Ideale Restklassenring Z/pZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 So 11.11.2012
Autor: grafzahl123

danke für den schnellen tipp. lagrange hört sich gut an :-)
also...
das heißt die kardinalität einer untergruppe ist immer teiler der kardinalität der gruppe!
da meine gruppe immer p elemente enthält gibt es nur 2 möglichkeiten der teilbarkeit: 1 Element (in unserem fall die "null") oder alle Elemente des restklassenrings mit der kardinalität p.
=> es können nur diese beiden ideale existieren.

ist das so richtig? und wenn ja kann man das auch "mathematischer" aufschreiben?

danke nochma für den super tipp

schöne grüße,
grafzahl123

Bezug
                        
Bezug
Ideale Restklassenring Z/pZ: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 11.11.2012
Autor: wieschoo


> danke für den schnellen tipp. lagrange hört sich gut an
> :-)

Lagrange passt ja auch bei Aufgaben zu Gruppen so ziemlich überall hin.

>  also...
>  das heißt die kardinalität einer untergruppe ist immer
> teiler der kardinalität der gruppe!

Das ist zumindest eine Schlussfolgerung aus dem Satz von Lagrange.

>  da meine gruppe immer p elemente enthält

UND p EINE PRIMZAHL IST!

> gibt es nur 2
> möglichkeiten der teilbarkeit: 1 Element (in unserem fall
> die "null") oder alle Elemente des restklassenrings mit der
> kardinalität p.
>  => es können nur diese beiden ideale existieren.

ok. Vielleicht besser: Es gibt nur zwei additive Untergruppen nämlich .... und ... .

>  
> ist das so richtig? und wenn ja kann man das auch
> "mathematischer" aufschreiben?

Jetzt fehlt noch eine Begründung warum die additiven Untergruppen auch Ideale in [mm] $\IZ/p\IZ$ [/mm] sind.

>  
> danke nochma für den super tipp
>  
> schöne grüße,
>  grafzahl123


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]