matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraIdeale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Ideale
Ideale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale: Aufgabe, Beweis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:20 Mo 06.06.2005
Autor: Kudi

Hallo!
Wenn I und J Ideale im Ring R sind, und im weiteren gilt:I+J=R, wie zeigt man dann, dass IJ=I [mm] \capJ?? [/mm]
Vielen Dank, vielleicht hat ja jemand eine Idee!
Kudi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ideale: Stimmt so nicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Mo 06.06.2005
Autor: holy_diver_80

Seien R = [mm] \IZ, [/mm] I = [mm] 2\IZ, [/mm] und [mm] J=3\IZ. [/mm]
Dann gilt I+J = [mm] \IZ, [/mm] da -2 [mm] \in [/mm] I, 3 [mm] \in [/mm] J, und daher 1 = -2+3 [mm] \in [/mm] I+J.
Allerdings ist I*J = [mm] 6\IZ \not= [/mm] I, da jedes Produkt von Elementen aus I und J sowohl Vielfaches von 2 und 3 sein muss, und da 6=2*3 in I*J liegt.

Bezug
        
Bezug
Ideale: Frage
Status: (Frage) beantwortet Status 
Datum: 09:23 Mi 08.06.2005
Autor: Kudi

Hallo!
mir ist wohl ein Fehler bei der Fragestellung unterlaufen. Es soll bei gleicher Angabe gezeigt werden, dass IJ=I [mm] \cap [/mm] J gilt
Vielleicht kanns ja noch mal jemand versuchen.
Danke
Euer Kudi

Bezug
                
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Mi 08.06.2005
Autor: banachella

Hallo!

Zunächst zeigst du, dass [mm] $IJ\subset I\cap [/mm] J$.
Dazu benutzt du die Idealeigenschaft: Sei [mm] $x\in [/mm] I,\ [mm] y\in [/mm] J$.
Weil $I$ ein Ideal ist und [mm] $y\in [/mm] R$, muss [mm] $xy\in [/mm] I$ gelten. Weil $J$ ein Ideal ist und [mm] $x\in [/mm] R$, muss [mm] $xy\in [/mm] J$ gelten. Insbesondere [mm] $xy\in I\cap [/mm] J$.

Jetzt musst du noch zeigen, dass [mm] $I\cap J\subset [/mm] IJ$.
Da habe ich ehrlich gesagt etwas Probleme mit... Hast du vielleicht wenigstens einen Ansatz?

Gruß, banachella

Bezug
                
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 08.06.2005
Autor: Julius

Hallo!

Die umgekehrte Inklusion ist im Allgemeinen falsch, sie gilt nur für maximale Ideale!!

Edit: Sorry, ich hatte die Voraussetzung [mm] $\red{I+J=R}$ [/mm] übersehen, das hat sich erledigt.

Gegenbeispiel:

[mm] $4\IZ \cdot [/mm] 6 [mm] \IZ [/mm] = [mm] 24\IZ$, [/mm]

aber

$4 [mm] \IZ \cap 6\IZ [/mm] =12 [mm] \IZ$. [/mm]

Liebe Grüße
Julius

Bezug
                
Bezug
Ideale: richtige Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Do 23.06.2005
Autor: Julius

Hallo!

Noch einmal zur nichttrivialen Inklusion $I [mm] \cap J\subset [/mm] IJ$, die man aber nur unter der Voraussetzung zeigen kann, dass der Ring $R$ kommutativ ist:

Es sei $x [mm] \in [/mm] I [mm] \cap [/mm] J$. Nach Voraussetzung gibt es $i [mm] \in [/mm] I$ und $j [mm] \in [/mm] J$ mit

$i+j=1$,

also:

$x=xi+xj$.

Wegen

$xi [mm] \in [/mm] (I [mm] \cap [/mm] J)I [mm] \subset [/mm] JI=IJ$

und

$xj [mm] \in [/mm] (I [mm] \cap [/mm] J)J [mm] \subset [/mm] IJ$

folgt:

$x=xi+xj [mm] \in [/mm] IJ$.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]