matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIdeal, Primideal, Max. Ideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Ideal, Primideal, Max. Ideal
Ideal, Primideal, Max. Ideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal, Primideal, Max. Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Mi 13.04.2011
Autor: xtraxtra

Aufgabe
Zeigen Sie, dass [mm] I=\{P\in\IQ[X] | P(0)=0\} [/mm] ein Ideal in [mm] \IQ[X] [/mm] ist. Man gebe ein [mm] Q\in\IQ[X] [/mm] an mit I=(Q). Ist I ein Primideal, ein maximales Ideal?

Guten Morgen.
Leider habe ich hier schon sehr große Probleme mit der Angabe und der Aufgabe selbst.
[mm] I=\{P\in\IQ[X] | P(0)=0\} [/mm] heißt dass, dass I aus allen Polynomen besteht, bei denen [mm] a_0=0 [/mm] ist?
Und was soll I=(Q) sein? Wäre sehr nett, wenn sich jmd die Mühe machen würde und das ganze etwas für mich aufdrößeln würde.


Ich habe sogar eine Lösung für die Aufgabe, nachdem ich aber nichtmal die Aufgabenstellung wirklich verstehe bringt die mir natürlich eher wenig. Trotzdem der Vollständigkeit halber:
I ist Ideal als Kern des Ringhomomorphismus [mm] \phi: \IQ[X]\to\IQ, (X)\mapsto [/mm] f(0). Es gilt I=(X). Da [mm] \phi [/mm] ein Isomorphismus [mm] \IQ[X]/I\to\IQ [/mm] auf einem Körper irreduzibel, ist Imaximal und erst recht prim.

        
Bezug
Ideal, Primideal, Max. Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 13.04.2011
Autor: fred97


> Zeigen Sie, dass [mm]I=\{P\in\IQ[X] | P(0)=0\}[/mm] ein Ideal in
> [mm]\IQ[X][/mm] ist. Man gebe ein [mm]Q\in\IQ[X][/mm] an mit I=(Q). Ist I ein
> Primideal, ein maximales Ideal?
>  Guten Morgen.
>  Leider habe ich hier schon sehr große Probleme mit der
> Angabe und der Aufgabe selbst.
> [mm]I=\{P\in\IQ[X] | P(0)=0\}[/mm] heißt dass, dass I aus allen
> Polynomen besteht, bei denen [mm]a_0=0[/mm] ist?

Ja


>  Und was soll I=(Q) sein?

Das bedeutet: Q erzeugt das Ideal I


FRED


Wäre sehr nett, wenn sich jmd

> die Mühe machen würde und das ganze etwas für mich
> aufdrößeln würde.
>  
>
> Ich habe sogar eine Lösung für die Aufgabe, nachdem ich
> aber nichtmal die Aufgabenstellung wirklich verstehe bringt
> die mir natürlich eher wenig. Trotzdem der
> Vollständigkeit halber:
>  I ist Ideal als Kern des Ringhomomorphismus [mm]\phi: \IQ[X]\to\IQ, (X)\mapsto[/mm]
> f(0). Es gilt I=(X). Da [mm]\phi[/mm] ein Isomorphismus
> [mm]\IQ[X]/I\to\IQ[/mm] auf einem Körper irreduzibel, ist Imaximal
> und erst recht prim.


Bezug
                
Bezug
Ideal, Primideal, Max. Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Mi 13.04.2011
Autor: xtraxtra


> >  Und was soll I=(Q) sein?

> Das bedeutet: Q erzeugt das Ideal I

Ok, dann verstehe ich wieso I=(X) ist.
Aber was hat das mit dem Ringhomomorphismus auf sich?

Bezug
                        
Bezug
Ideal, Primideal, Max. Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 13.04.2011
Autor: fred97


> > >  Und was soll I=(Q) sein?

>  
> > Das bedeutet: Q erzeugt das Ideal I
> Ok, dann verstehe ich wieso I=(X) ist.
>  Aber was hat das mit dem Ringhomomorphismus auf sich?

Du hast den Ringhomomorphismus  $ [mm] \phi: \IQ[X]\to\IQ, [/mm] $,   [mm] $\phi(p)=p(0)$ [/mm]

Dann ist doch [mm] $I=kern(\phi)$ [/mm]  und [mm] kern(\phi) [/mm] ist ein Ideal.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]