matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIdeal Kreuzprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ideal Kreuzprodukt
Ideal Kreuzprodukt < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal Kreuzprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Sa 07.07.2012
Autor: diab91

Aufgabe
Seien R,S kommutative Ringe. Beweisen Sie, dass die Ideale des kartesischen Produktes genau die Produkte IxJ sind, wobei I ein Ideal von R und J ein Ideal von S ist.

Guten Abend,

ich habe folgendes versucht:

Sei K ein beliebiges Ideal von RxS. Dann gilt:
1. (0,0) [mm] \in [/mm] K
2. [mm] \forall [/mm] (x,y),(x',y') [mm] \in [/mm] K: (x+x',y+y') [mm] \in [/mm] K
3. Sei (x,y) [mm] \in [/mm] K und (m,n) [mm] \in [/mm] RxS: (x*m,y*n) [mm] \in [/mm] K.

Da K [mm] \subseteq [/mm] RxS gelten für die erste Komponente von K die Axiome eines Ideals in R und in der zweiten die Axiome eines Ideals in S.

Damit wäre die Aufgabe doch bereits erledigt oder täusche ich mich da?

Schönen Gruß,
Diab91

        
Bezug
Ideal Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Sa 07.07.2012
Autor: hippias

Du hast sozusagen nur die eine Inklusion bewiesen.

Bezug
                
Bezug
Ideal Kreuzprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 07.07.2012
Autor: diab91

Moin,

Ok, ja. Aber wenn ich mir ein Ideal I von R und ein Ideal J von S wähle und das Kreuzprodukt davon betrachte, so gelten doch ebenfalls direkt die Ideal Axiome in RxS. Oder übersehe ich da was?

Schönen Gruß,
Diab91

Bezug
                        
Bezug
Ideal Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Sa 07.07.2012
Autor: fred97


> Moin,
>  
> Ok, ja. Aber wenn ich mir ein Ideal I von R und ein Ideal J
> von S wähle und das Kreuzprodukt davon betrachte, so
> gelten doch ebenfalls direkt die Ideal Axiome in RxS. Oder
> übersehe ich da was?

Sicherlich sollst auch das sauber niederschreiben

FRED

>  
> Schönen Gruß,
> Diab91


Bezug
        
Bezug
Ideal Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 07.07.2012
Autor: fred97


> Seien R,S kommutative Ringe. Beweisen Sie, dass die Ideale
> des kartesischen Produktes genau die Produkte IxJ sind,
> wobei I ein Ideal von R und J ein Ideal von S ist.
>  Guten Abend,
>  
> ich habe folgendes versucht:
>  
> Sei K ein beliebiges Ideal von RxS. Dann gilt:
> 1. (0,0) [mm]\in[/mm] K
>  2. [mm]\forall[/mm] (x,y),(x',y') [mm]\in[/mm] K: (x+x',y+y') [mm]\in[/mm] K
>  3. Sei (x,y) [mm]\in[/mm] K und (m,n) [mm]\in[/mm] RxS: (x*m,y*n) [mm]\in[/mm] K.
>  
> Da K [mm]\subseteq[/mm] RxS gelten für die erste Komponente von K
> die Axiome eines Ideals in R und in der zweiten die Axiome
> eines Ideals in S.


Damit würde ich mich nicht begnügen !

Setze I= [mm] \{x \in R: \exists y \in S :(x,y) \in K \} [/mm]

und J= [mm] \{y \in S: \exists x \in R :(x,y) \in K \} [/mm]

und zeige, dass I ein Ideal in R und J ein Ideal in S ist


>  
> Damit wäre die Aufgabe doch bereits erledigt oder täusche
> ich mich da?

Und die Umkehrung ?

FRED

>  
> Schönen Gruß,
>  Diab91


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]