matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesIdeal / Hauptideal in Z[X]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Ideal / Hauptideal in Z[X]
Ideal / Hauptideal in Z[X] < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal / Hauptideal in Z[X]: Tipp/Ansatz
Status: (Frage) beantwortet Status 
Datum: 00:16 Mo 08.06.2009
Autor: klaeuschen

Aufgabe
Sei I [mm] \subseteq \IZ [/mm] [X] die Menge I = {f [mm] \in \IZ [/mm] [X] | f(1) ist durch 3 teilbar}. Zeigen Sie:
a) I ist ein Ideal in [mm] \IZ [/mm] [X].
b) I ist kein Hauptideal. Geben Sie ein möglichst kleines Erzeugendensystem für I an.

Hallo Mathefreunde!
Leider bin ich gerade total am Verzweifeln, was die Aufgaben a) und b)  betrifft.

Ich kenne die drei Vorraussetzungen, die für Ideale gelten müssen:
(I1) a, b [mm] \in [/mm] I [mm] \Rightarrow [/mm] a + b [mm] \in [/mm] I.
(I2) a [mm] \in [/mm] I, r [mm] \in \IZ [/mm] [X] [mm] \Rightarrow [/mm] ra [mm] \in [/mm] I.
(I3) I [mm] \not= \emptyset. [/mm]

Leider fehlt mir jeglicher Ansatz, wie ich nachweisen soll, ob diese Vorraussetzungen erfüllt sind.

Vielen Dank für eure Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ideal / Hauptideal in Z[X]: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Mo 08.06.2009
Autor: schachuzipus

Hallo klaeuschen,


> Sei [mm] $I\subseteq \IZ[X]$ [/mm] die Menge [mm] $I=\{f\in \IZ[X] | f(1)$ ist durch $3$ teilbar $\}$. [/mm] Zeigen Sie:
>  a) I ist ein Ideal in [mm]\IZ[/mm] [X].
>  b) I ist kein Hauptideal. Geben Sie ein möglichst kleines
> Erzeugendensystem für I an.
>  Hallo Mathefreunde!
>  Leider bin ich gerade total am Verzweifeln, was die
> Aufgaben a) und b)  betrifft.
>  
> Ich kenne die drei Vorraussetzungen, die für Ideale gelten
> müssen:
>  (I1) a, b [mm]\in[/mm] I [mm]\Rightarrow[/mm] a + b [mm]\in[/mm] I.

Das kenne ich unter [mm] $a,b\in I\Rightarrow a\red{-}b\in [/mm] I$

>  (I2) a [mm]\in[/mm] I, r [mm]\in \IZ[/mm] [X] [mm]\Rightarrow[/mm] ra [mm]\in[/mm] I.
>  (I3) I [mm]\not= \emptyset.[/mm]
>  
> Leider fehlt mir jeglicher Ansatz, wie ich nachweisen soll,
> ob diese Vorraussetzungen erfüllt sind.

Na, $(I3)$ ist doch nicht so schwierig, kannst du kein Polynom $p$ mit ganzzahligen Koeffizienten finden, so dass $p(1)$ durch 3 teilbar ist?

Nimm ein möglichst einfaches, etwa ein konstantes Polynom [mm] $p\equiv [/mm] 3$, das ist offenbar [mm] $\in\IZ[x]$ [/mm] und $p(1)=3$ ist durch 3 teilbar

Für $(I1)$ nimm die zwei Polynome $p, [mm] q\in\IZ[x]$ [/mm] her mit $p(1), q(1)$ durch 3 teilbar, dh. [mm] $p(1)=k\cdot{}3$ [/mm] und [mm] $q(1)=l\cdot{}3$ [/mm]

Dann ist $(p-q)(1)=p(1)-q(1)= ...$

Ist das  durch 3 teilbar, und ist außerdem [mm] $p-q\in\IZ[x]$, [/mm] also [mm] $\in [/mm] I$ ?

Das sollte genügen, damit du weitermachen kannst ...

>  
> Vielen Dank für eure Hilfe.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]