matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraIdeal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Ideal
Ideal < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal: brauche einen kleinen Tipp
Status: (Frage) überfällig Status 
Datum: 18:47 Mo 27.04.2009
Autor: Tasel

Aufgabe
Sei $R [mm] \not [/mm] = [mm] \{0\}$ [/mm] ein nullteilerfreier und kommutativer Ring. Zeigen Sie:
Das von [mm] $a_1, [/mm] ..., [mm] a_n \in [/mm] R$ erzeugte Ideal von $R$ ist [mm] $(a_1, [/mm] ..., [mm] a_n) [/mm] = [mm] \{\summe_{i=1}^{n} r_ia_i | r_1, ..., r_n \in R\}$. [/mm]

Hallo!

Ich habe versucht diese Aufgabe wie folgt zu lösen, komme jedoch nicht zu einem ordentlichen Ergebnis:

Anfangen würde ich mit dem Ideal von [mm] $a_1$. [/mm] Dies wäre dann [mm] $(a_1) [/mm] = [mm] \{ ra_i : r \in R \}$. [/mm]
Da $r$ ja unterschiedliche Elemente aus dem Ring $R$ annehmen kann, lassen sich Ideale der Form [mm] $\{r_1a_1, r_2a_1, r_3a_1, ..., r_ia_1\}$ [/mm] bilden. Das ganze geht natürlich auch mit [mm] $a_2$ [/mm] bis hin zu [mm] $a_n$. [/mm] Die gesamte Menge dieser Ideale wäre dann der Schnitt dieser Mengen:
[mm] $\{r_1a_1, ..., r_1a_n\} \cap \{r_2a_1, ..., r_2a_n\} \cap [/mm] ... [mm] \cap \{r_na_n, ..., r_na_n\}$. [/mm]

Soweit bin ich bisher gekommen. Hoffe es stimmt einigermaßen. Wie komme ich jetzt von dieser Vereinigung hin zu der Summe?

        
Bezug
Ideal: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:58 Mi 29.04.2009
Autor: aklopo

Aufgabe
Sei R [mm] \not={0} [/mm]  ein nullteilerfreier und kommutativer Ring. Zeige:
Das von [mm] a_{2},...,a_{n} [/mm] erzeugte Ideal von R ist [mm] (a_{1},...,a_{n})=\{\summe_{i=1}^{n}r_{i}a_{i} | r_{1},...,r_{n}\in R\}. [/mm]

Moin,

Ich weiß, dass ich drei Eigenschaften zeigen muss um zu beweisen, dass [mm] a_{1},...,a_{n} [/mm]  ein Ideal I ist.
Soweit ich weiß wäre das:
1)  o [mm] \in [/mm] I
2)  I abgeschlossen bezüglich "+" und "-" in R
3) Für alle a [mm] \in [/mm] I und r [mm] \in [/mm] R gilt:  a*r [mm] \in [/mm] I und r*a [mm] \in [/mm] I

Erstens sollte schon durch die Aufgabenstellung erfüllt sein.
Zu zweitens und drittens:
Ich vermute, dass ich etwas von der Form

n*a + n*b = n*(a+b) [mm] \in [/mm] I
n*a - n*b = n*(a-b) [mm] \in [/mm] I

und

(n*a)*b = n*(a*b) [mm] \in [/mm] I
b*(n*a) = n*(a*b) [mm] \in [/mm] I

anführen muss. allerdings weiß ich nicht wie ich das ganze für die Summe zeige. Oder habe ich die Aufgabe da vollkommen falsch verstanden?

Danke im Vorraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Bezug
                
Bezug
Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Do 30.04.2009
Autor: elvis-13.09

Hallo.

zu 1.) Es ist nicht schwer einzusehen, dass [mm] 0\in (a_{1},...,a_{n}) [/mm] ist. Wähle nämlich [mm] r_{i}=0 [/mm] für alle [mm] i\in\{1,..n\}. [/mm]
zu 2.) Abgeschlossenheit bzgl. "+".
Seien also [mm] a,b\in (a_{1},...,a_{n}) [/mm] dann gibt es Darstellungen [mm] a=\summe_{i=1}^{n}r_{i}a_{i} [/mm] und [mm] b=\summe_{i=1}^{n}s_{i}a_{i}. [/mm]
Es ist also [mm] a+b=\summe_{i=1}^{n}r_{i}a_{i}+\summe_{i=1}^{n}s_{i}a_{i}. [/mm] Nun solltest du dich erinnern, dass du in einem Ring rechnest und das Distributivgesetz gilt. Es folgt also die Aussage unmittelbar, da dein Ring abgeschlossen bzgl + ist. Das solltest du allerdings formalisieren.
Abgeschlossenheit bzgl. Multiplikation geht ähnlich.
Zu 3.)
Das Dürfte nun klar sein.

Grüße Elvis

Bezug
        
Bezug
Ideal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 30.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]