matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräume\IR-Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - \IR-Vektorraum
\IR-Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

\IR-Vektorraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:12 Sa 24.11.2007
Autor: Mijoko

Aufgabe
Zeigen Sie, dass die Menge [mm] V:=Abb(\IR,\IR) [/mm] aller Abbildungen [mm] f:\IR\to\IR [/mm] zu eineim [mm] \IR-Vektorraum [/mm] wird, wenn man f+g und af für [mm] f,g\in\IR [/mm] definiert durch

(f+g)(x):=f(x)+g(x)   [mm] (x\in\IR), [/mm]
(af)(x):=af(x)            [mm] (x\in\IR). [/mm]

Beweisen Sie, dass

[mm] G:={f\inV:f(-x)=f(x) für alle x\in\IR}, [/mm]
[mm] U:={f\inV:f(-x)=-f(x) für alle x\in\IR} [/mm]

Untervektorräume von V mit [mm] V=G\oplusU [/mm] sind.(Die Abbildungen in G heißen gerade, die in U ungerade.)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab einfach keine Ahnung von Untervektorräumen und dadurch überhaupt keinen Ansatz. War nicht in der Vorlesung, als das drankam und es kann mir auch keiner erklären. Bitte helft mir!

        
Bezug
\IR-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Sa 24.11.2007
Autor: angela.h.b.


> Zeigen Sie, dass die Menge [mm]V:=Abb(\IR,\IR)[/mm] aller
> Abbildungen [mm]f:\IR\to\IR[/mm] zu eineim [mm]\IR-Vektorraum[/mm] wird, wenn
> man f+g und af für [mm]f,g\in\IR[/mm] definiert durch
>  
> (f+g)(x):=f(x)+g(x)   [mm](x\in\IR),[/mm]
>  (af)(x):=af(x)            [mm](x\in\IR).[/mm]
>  
> Beweisen Sie, dass
>
> [mm]G:={f\inV:f(-x)=f(x) für alle x\in\IR},[/mm]
>  
> [mm]U:={f\inV:f(-x)=-f(x) für alle x\in\IR}[/mm]
>  
> Untervektorräume von V mit [mm]V=G\oplusU[/mm] sind.(Die Abbildungen
> in G heißen gerade, die in U ungerade.)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich hab einfach keine Ahnung von Untervektorräumen und
> dadurch überhaupt keinen Ansatz. War nicht in der
> Vorlesung, als das drankam und es kann mir auch keiner
> erklären.

Hallo,

dann wirst Du nicht umhinkommen, das anhand eines Buches und der Mitschrift der Kommilitonen nachzuarbeiten.
I.d.R. muß man das ja auch tun, wenn man in der Vorlesung war, oder hast Du nach der Vorlesung stets das Gefühl, nun bestens informiert zu sein? Ich hatte das jedenfalls meist nicht, sondern bin eher mit "Ich weiß, daß ich nichts weiß." heim gegangen.

Wie man die Unterraumeigenschaften nachweist, hatte ich Dir im anderen Post erklärt, ich wiederhole das:

"Dafür, daß U ein Untervektorraum vom VR  V über K ist, muß man nur zeigen:

1. U ist nichtleer
2. U ist abgeschlossen bzgl +, dh. für $ [mm] u_1, u_2 \in [/mm] $ U ist auch $ [mm] u_1+ u_2 \in [/mm] $ U
3. U ist abgeschlossen bzgl der Multiplikatione mit Skalaren (also mit Elementen des Körpers), d.h.
für alle $ [mm] k\in [/mm] $ K  gilt  $ [mm] ku_1\in [/mm] $ U."

Bevor Du mit den Unterraumen anfängst, mußt Du aber zeigen, daß [mm] Abb(\IR,\IR) [/mm] zusammen mit den in der Aufgabe definierten Verknüpfungen ein Vektorraum ist. Hierfür mußt Du sämtliche Vektorraumeigenschaften zeigen.

Für den Anfänger liegt das Problem bei dieser Aufgabe darin, daß die Vektoren hier nicht Zahlentripel o.ä. sind, sondern Funktionen.

Für die Assoziativität von + mußt Du also zeigen, daß für sämtliche f,g,h: [mm] \IR [/mm] --> [mm] \IR [/mm] gilt:

(f+g)+h=f+(g+h).

Dabei mußt Du Dich halt an die Definitionen halten.
Wenn Du erstmal ein bißchen etwas gearbeitet hast, kann man weitersehen - es ist ja sinnlos, ins Blaue hinein zu reden.

In den folgenden Aufgabenteilen ist dann mit den Unterraumkriterien zu zeigen, daß die zur y-Achse symmetrischen Funktionen und die, die punktsymmetrisch zum Ursprung sind, jeweils einen Unterraum bilden.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]