matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisINTEGRAL. FLÄCHEN BERECHNEN
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - INTEGRAL. FLÄCHEN BERECHNEN
INTEGRAL. FLÄCHEN BERECHNEN < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

INTEGRAL. FLÄCHEN BERECHNEN: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Di 28.09.2004
Autor: gore

Hi,
habe folgendes Problem:
f(x)= -x²+4x
Nun soll zu dieser Funktion von f eine Gerade y=tx bestimmt werden, welche die Fläche, die die Funktion f und die x-Achse einschließen, genau zu gleichen Teilen halbiert.
D.h. "t" muss so bestimmt werden, dass y die Fläche unter f(x) im Verhältnis 1:1 teilt.

So kann mir jemand helfen', bittE?
Bin soweit, dass ich die Integrale unter f und unter y berechnet habe, allerdings, wenn ich von das von einander abziehe etc. komme ich nicht weiter, muss ja irgendwie auf nen Wert für t kommen und da finde ich keinen richtigen Ansatz.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:http://www.chemieonline.de/forum/showthread.php?p=242010#post242010

        
Bezug
INTEGRAL. FLÄCHEN BERECHNEN: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Di 28.09.2004
Autor: FriedrichLaher

Hallo, gore

Du mußt die 0stellen der $f(x)$ bestimmen.
$f(x)$ zwischen diesen Integriert, ergibt die
Flächenmaszahl $A$ des Stückes das halbiert
werden soll.
Dann mußt du allgemein, also als Funktionen
von t, die Schnittpunkt [mm] $s_1,s_2$ [/mm] von $f(x)$ mit $t*x$
bestimmen und, wieder als Funktion von $t$,
$F(t) = [mm] \integral_{s_1}^{s_2}(f(x)-t*x)\,\text{dx}$ [/mm]
bestimmen und schließliche die Gleichung
$F(t) = [mm] \bruch{A}{2}$ [/mm] nach $t$ lösen.

Bezug
                
Bezug
INTEGRAL. FLÄCHEN BERECHNEN: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Di 28.09.2004
Autor: Andi

Hallo Friedrich,
  

> Du mußt die 0stellen der [mm]f(x)[/mm] bestimmen.
>  [mm]f(x)[/mm] zwischen diesen Integriert, ergibt die
>  Flächenmaszahl [mm]A[/mm] des Stückes das halbiert
>  werden soll.
>  Dann mußt du allgemein, also als Funktionen
>  von t, die Schnittpunkt [mm]s_1,s_2[/mm] von [mm]f(x)[/mm] mit [mm]t*x[/mm]
>  bestimmen und, wieder als Funktion von [mm]t[/mm],
>  [mm]F(t) = \integral_{s_1}^{s_2}(f(x)-t*x)\,\text{dx}[/mm]

Ich bin mir nicht ganz sicher aber muss man nicht das bestimmte Integral von 0 bist [mm]s_2[/mm] (das ist der Schnittpunkt der Geraden mit der Parabel welcher weiter rechts liegt) ausrechnen ?
Oder denk ich da gerade falsch ?
Wenn ich es mir überlege kommt es ja auf das selbe heraus, denn (0/0) ist ja [mm] s_1 [/mm] also hast du schon recht gehabt

> bestimmen und schließliche die Gleichung
>  [mm]F(t) = \bruch{A}{2}[/mm] nach [mm]t[/mm] lösen.

Mit freundlichen Grüße,
Andi


Bezug
        
Bezug
INTEGRAL. FLÄCHEN BERECHNEN: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Di 28.09.2004
Autor: ladislauradu

Hallo Gore!

Bestimmen wir zuerst die Nullstellen der Funktion:

[mm]-x^{2}+4x=0\;\;\; \gdw \;\;\;-x(x-4)=0[/mm]

die Lösungen sind:
[mm]x_{1}=0,\;\;\; x_{2}=4[/mm]

Die Gesamtfläche 2A ist:
[mm]2A=\integral_{0}^{4}{(-x^{2}+4x)dx}=\left[ -\bruch{x^{3}}{3}+2x^{2} \right]_{0}^{4}=\bruch{32}{3}[/mm]

Davon die Hälfte A ist:

[mm]A=\bruch{16}{3}[/mm]

Die Schnittpunkte der Gerade mit f(x) sind die Lösungen der Gleichung:

[mm]-x^{2}+4x=tx\;\;\; \gdw \;\;\; -x(x-(4-t))=0[/mm]

[mm]s_{1}=0,\;\;\; s_{2}=4-t[/mm]

Die gesuchte Fläche ist:

[mm]A=\integral_{0}^{4-t}{(-x^{2}+4x-tx)dx}=\left[ -\bruch{x^{3}}{3}+(4-t)*\bruch{x^{2}}{2} \right]_{0}^{4-t}=\bruch{(4-t)^{3}}{6}[/mm]

Die Gleichung für t ist, also:

[mm]\bruch{(4-t)^{3}}{6}=\bruch{16}{3}[/mm]

Die Lösung ist:

[mm]t=4-2\wurzel[3]{4}[/mm]

Ich hofe, ich habe mich nicht verrechnet.

Schöne Grüße, :-)
Ladis




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]