matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Hyperreelle Zahlen *IR
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Hyperreelle Zahlen *IR
Hyperreelle Zahlen *IR < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperreelle Zahlen *IR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:33 Fr 05.02.2016
Autor: bquadrat

Aufgabe
.

Hallo miteinander, ich habe keine Frage zu einer Aufgabe, aber möchte mich hier mal etwas "schlaufragen", weil ich zu einem bestimmten Thema nicht all zu viele Infos aus dem Netz bekommen habe. Ich bin vor Kurzem über die hyperreellen Zahlen gestoßen und fand das ganze extreminteressant. Ich wollte dann mehr darüber erfahren und habe bisschen im Netz rumgestöbert, habe aber nur halbwegs brauchbare Sachen auf Wikipedia gefunden und wenn mehr dann in Englischer Literatur (und auch da oft irgendwie abgehakt und unvollständig). Ist das ein noch so junges und unerforschtes Gebiet? Kennt sich jemand damit aus und könnte mir evtl. eine gute Internetseite, ein Buch, ein Video, etc.  (meinetwegen auch auf Englisch) empfehlen?

Danke im Voraus

[mm] b^{2} [/mm]

        
Bezug
Hyperreelle Zahlen *IR: Antwort
Status: (Antwort) fertig Status 
Datum: 07:06 Fr 05.02.2016
Autor: fred97


> .
>  Hallo miteinander, ich habe keine Frage zu einer Aufgabe,
> aber möchte mich hier mal etwas "schlaufragen", weil ich
> zu einem bestimmten Thema nicht all zu viele Infos aus dem
> Netz bekommen habe. Ich bin vor Kurzem über die
> hyperreellen Zahlen gestoßen und fand das ganze
> extreminteressant. Ich wollte dann mehr darüber erfahren
> und habe bisschen im Netz rumgestöbert, habe aber nur
> halbwegs brauchbare Sachen auf Wikipedia gefunden und wenn
> mehr dann in Englischer Literatur (und auch da oft
> irgendwie abgehakt und unvollständig). Ist das ein noch so
> junges und unerforschtes Gebiet? Kennt sich jemand damit
> aus und könnte mir evtl. eine gute Internetseite, ein
> Buch, ein Video, etc.  (meinetwegen auch auf Englisch)
> empfehlen?

Hyperreelle Zahlen gehören zur "Nichtstandardanalysis"

Gib mal "Nichtstandardanalysis" bei Google ein. Du wirst erschlagen von der Fülle von Resultaten ...

FRED

>  
> Danke im Voraus
>  
> [mm]b^{2}[/mm]  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]