matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHyperebenenspiegelungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Hyperebenenspiegelungen
Hyperebenenspiegelungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebenenspiegelungen: Frage
Status: (Frage) für Interessierte Status 
Datum: 19:46 Do 30.06.2005
Autor: Moe007

Hallo Mathefreaks,
ich hoffe es kann mir jemand bei folgender Aufgabe weiter helfen, weil ich hab keine Ahnung, wie ich da vorgehen soll.
Gegeben sei der  [mm] \IR^{3} [/mm] mit dem Standardskalarprodukt und kan. Basis und die darst. Matrix A eines Endorm. f:

A=  [mm] \pmat{ 4/5 & 0 & 3/5 \\ 0 & -1 & 0 \\ -3/5 & 0 & 4/5 } [/mm]

Man soll zunächst zeigen, dass f orthogonal ist. Da hab ich einfach die Eigenschaft ausgenutzt, dass wenn die darst. Matrix A orthogonal ist, dann ist f auch orthogonal. A ist orthogonal, da [mm] A^{t}A [/mm] = E ist. Außerdem sieht man beim genauen Hinschauen, dass die Spalten von A jeweils senkrecht aufeinander stehen.

Dann soll man aber zeigen, dass f in ein Produkt von Hyperebenenspiegelungen zerlegbar ist.  f ist ja eine Spigelung, weil det f = -1 ist. Wie zerlegt man aber diese Spiegelung in ein Produkt von Hyperebenenspiegelungen?? Ich weiß, dass Hyperebenen eine Dim. kleiner sind als der ganze Raum, in dem Fall also dim 2.
Ich hoffe es kann mir jemand einen Tipp geben, wie ich da vorzugehen hab.
Danke. Moe

        
Bezug
Hyperebenenspiegelungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Do 30.06.2005
Autor: DaMenge

Hi,

dies gehört zum 9er Zettel der gesperrten LA-Seite,
also abwarten, wie der WebMaster entscheidet !

bis dahin ist's (noch?) sichtbar für Interessierte.
viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]