matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHyperebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Hyperebene
Hyperebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene: Frage
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 30.06.2005
Autor: holg47

Hallo!

Ich würde gerne wissen, was eine Hyperebene ist!

Vielen Dank!!

        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Do 30.06.2005
Autor: Berti

eine Hyperebene ist ein Raum der Dimension n-1

wenn du dich zum beispiel im Raum [mm] \IR^3 [/mm] befindest, ist jede Ebene eine Hyperebene des [mm] \IR^3. [/mm]
wenn du dich im [mm] \IR^2 [/mm] befindest ist jede Gerade eine.
und das ganze im [mm] \IR^n. [/mm] da sind eben alle (Unter-) räume der dimension  n-1 Hyerebenen

Bezug
                
Bezug
Hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Mi 19.07.2006
Autor: amalie

Wie kann ich denn eine solche Hyperebene bestimmen wenn ich eine Fkt von [mm] R^3 [/mm] nach R habe?

Bezug
                        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Do 20.07.2006
Autor: felixf

Hallo!

> Wie kann ich denn eine solche Hyperebene bestimmen wenn ich
> eine Fkt von [mm]R^3[/mm] nach R habe?

Wenn es eine lineare Funktion ist (ich nenne sie mal $f$) und sie nicht grad ueberall 0 ist, dann ist [mm] $\ker [/mm] f = [mm] \{ x \in \IR^3 \mid f(x) = 0 \}$ [/mm] eine Hyperebene in [mm] $\IR^3$: [/mm] Nach dem Dimensionssatz ist [mm] $\dim \ker [/mm] f + [mm] \dim [/mm] Im f = [mm] \dim \IR^3 [/mm] = 3$, und [mm] $\dim [/mm] Im f = [mm] \dim \IR [/mm] = 1$. Also ist [mm] $\dim \ker [/mm] f = 2 = 3 - 1$ und somit eine Hyperebene.

LG Felix



Bezug
                                
Bezug
Hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Do 20.07.2006
Autor: amalie

Vielen Dank!
Mich interessiert noch ob ich auch irgendwie über die Analysis gehen kann also eine Hyperebene über den Gradienten bestimmen kann
lG

Bezug
                                        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Do 20.07.2006
Autor: felixf

Hallo Amalie!

>  Mich interessiert noch ob ich auch irgendwie über die
> Analysis gehen kann also eine Hyperebene über den
> Gradienten bestimmen kann

Wenn du eine beliebige genuegend glatte Funktion $f : [mm] \IR^n \to \IR$ [/mm] hast und den Gradienten $grad(f)(x) = v = [mm] (v_1, \dots, v_n) \neq [/mm] (0, [mm] \dots, [/mm] 0)$ an der Stelle $x = [mm] (x_1, \dots, x_n)$, [/mm] dann kannst du den Orthogonalraum zu $v$ betrachten: Dieser hat die Dimension $n - 1$ (da der von $v$ erzeugte Untervektorraum Dimension $1$ hat).

Wenn du diese Hyperebene um $x$ verschiebst, und wenn $n = 2$ ist, dann ist das gerade die Tangente an der Hoehenlinie von $f$ zum Niveau $f(x)$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]