matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesHyperebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Hyperebene
Hyperebene < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 So 26.04.2009
Autor: kuemmelsche

Hallo zusammen,

in der Definition die mir vorliegt steht drinne, dass die Hyperebene eindeutig durch die Punkte die sie erzeugen, bestimmt ist.

Angenommen die Punkte [mm] A_1 [/mm] bis [mm] A_n [/mm] erzeugen eine n-1-dimensionale Hyperebene, da fehlt ja im vergleich zum Ursprungsraum nur der Ursprung [mm] A_0. [/mm]

Ist nur genau der Unterraum die Hyperebene, dem die [mm] A_0 [/mm] "fehlt", oder gibt es n+1 verschiedene Hyperebenen?

Ich denke ja es gibt mehrere, aber das geht aus meiner Definition nicht genau heraus. Auch andere Definitionen im Netz können diese Frage nicht endgültig klären.

Danke im Voraus!

lg Kai

        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Mo 27.04.2009
Autor: angela.h.b.

Hallo,

wenn Du im Raum der Dimension n bist, dann sind die Hyperebenen die Teilräume der Dimension n-1.

Wenn Ihr gerade bei den affinen Räumen seid, dann sind's halt affine Teilräume der Dimension n-1.

Für n=3 die "normalen" Ebenen  (eindeutig durch 3 nichtkollineare Punkte),
für n=3 sind die Hyperebenen die Geraden (eindeutig bestimmt durch 2 Punkte),
für n=4 sind die Hyperebenen die 3-dimensionalen Teilräume (eindeutig bestimmt durch 4 Punkte).

Es gibt also nicht nur eine Hyperebene.

> in der Definition die mir vorliegt steht drinne, dass die
> Hyperebene eindeutig durch die Punkte die sie erzeugen,
> bestimmt ist.
>  
> Angenommen die Punkte [mm]A_1[/mm] bis [mm]A_n[/mm] erzeugen eine
> n-1-dimensionale Hyperebene, da fehlt ja im vergleich zum
> Ursprungsraum nur der Ursprung [mm]A_0.[/mm]

Nun, der Ursprungsraum kann doch durch n sehr verschiedene Punkte erzeugt werden. Da gibt es ja meist nicht nur eine Möglichkeit.

> Ist nur genau der Unterraum die Hyperebene, dem die [mm]A_0[/mm]
> "fehlt", oder gibt es n+1 verschiedene Hyperebenen?

Im [mm] \IR^n [/mm] gibt es viel mehr als n+1 Hyperebene, ich denke, daß dies oben deutlich geworden ist.
Wieso sollten das endlich viele sein?


> Ich denke ja es gibt mehrere, aber das geht aus meiner
> Definition nicht genau heraus. Auch andere Definitionen im
> Netz können diese Frage nicht endgültig klären.

Wenn Du Dir merkst Hyperebene=Unterraum der Dimension n-1, dann kann eigentlich nichts mehr schiefgehen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]