matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHyperebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Hyperebene
Hyperebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:53 So 26.02.2006
Autor: nick_860

Aufgabe
f [mm] \in R^4*1 \to R^3*1 [/mm] bildet wie folgt ab:
[mm] \begin{pmatrix} 1\\ 0 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 2\\ 2 \\ 3 \end{pmatrix}, [/mm]
[mm] \begin{pmatrix} 2\\ -1 \\ 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0\\ 2 \\ -1 \end{pmatrix}, [/mm]
[mm] \begin{pmatrix} 0\\ -1 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1\\ 1 \\ -1 \end{pmatrix}, [/mm]
[mm] \begin{pmatrix} 1\\ 0 \\ 1 \\ 1 \end{pmatrix} \to \begin{pmatrix} 3\\ 2 \\ -4 \end{pmatrix} [/mm]
stellen sie Koordinatisierung EE(f) auf sowie die Menge {a [mm] \in R^4*1/ [/mm] f(a) [mm] \in [/mm] H} für die Hyperebene H: [mm] 3y_1 [/mm] + [mm] y_2 -2y_3 [/mm] = 7

Hallo!
Ich komme bei der Koordinatisierung zwar auf die richtige Lösung (habe die Probe durchgeführt), aber bei der Hyperebene stehe ich an.
1. zeile 0121
2. zeile 1010
3. zeile 0231
Vielen dank im Voraus.
Gruß nick

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Mo 27.02.2006
Autor: DaMenge

Hi,

sorry aber was ist eine Koordinatisierung ?!?

bei deiner zweiten Sache : sehe ich das richtig, dass du das Urbild der Hyperebene unter der Abbildung suchst?

wenn ja : schreibe die Abbildung also als Matrix (bzw Gl.sys.) und die Hyperebene auch als Vektor (löse nach [mm] y_2=.. [/mm] auf und setze [mm] H=\vektor{y_1\\..\\y_3} [/mm] mit [mm] y_1 [/mm] und [mm] y_3 [/mm] beliebig aber fest)
Dann löse das entspr. Gleichungssystem
(bzw : bestimme den Kern und eine spezielle Lösung des inhomogenen Gleichunssystems)

ansonsten schreibe doch einfach mal ein wenig mehr dazu, was du getan/versuchst hast und warum du nun nicht weiter kommst - denn das, was dort steht ist zu wenig um es zu verstehen..

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]