matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHouseholder Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Householder Transformation
Householder Transformation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Householder Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 So 03.02.2008
Autor: domenigge135

Hallo. Sorry das ich euch am ,,heiligen Sonntag'' womöglich auf die nervern gehen muss. Ich habe ein kleines und hoffentlich schnell lösbares Problem. Es geht um die Housholder Transformation, die da lautet:
Sei u [mm] \in \IR^2 [/mm] und [mm] H_u: \IR^2 \to \IR^2 [/mm] die Abbildung x [mm] \to x-2u\*\bruch{}{}. [/mm]
Ich weiß, dass es auch noch andere Methoden zur Householder Transformation gibt. Allerdings hatten wir jetzt diese definiert und deshalb ist es wahrscheinlich am besten auch damit zu rechnen. Nun zu meinem Problem:
Was genau gilt jetzt für [mm] u=\vektor{1 \\ 0} [/mm] und beliebiges x [mm] \in \IR^2??? [/mm] Ich muss ja irgendwie auf einen Wert x [mm] \in \IR^2 [/mm] kommen. aber wie kriege ich diesen raus. bzw. wie ist dieser in der Householder Transmformation definiert??? Denn ich muss ja am Ende auf ein Polynom kommen, um die Eingenwerte und Eigenvektoren zu berechnen. Hierfür fehlt mir allerdings jeder Ansatz, da ich ja erstmal x benötige.

Ich bedanke mich schonmal für jede Hilfe. Mit freundlichen Grüßen domenigge135

        
Bezug
Householder Transformation: Spiegelung
Status: (Antwort) fertig Status 
Datum: 14:03 Di 05.02.2008
Autor: Gnometech

Grüße!

Den Begriff "Householder-Transformation" habe ich ehrlich gesagt noch nie gehört, aber was da steht ist schlicht eine Spiegelung an der zu u senkrechten Hyperebene.

Und für u wie im Beispiel, also $u = [mm] \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ [/mm] kannst Du einfach einsetzen, was [mm] $H_u(x)$ [/mm] sein soll, wenn $x = [mm] \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \IR^2$ [/mm] beliebig gegeben ist.

Zunächst gilt [mm] $\langle [/mm] u,u [mm] \rangle [/mm] = 1$, also kann der Nenner vernachlässigt werden. Weiter ist [mm] $\langle x,u\rangle [/mm] = [mm] x_1$, [/mm] also gilt:

[mm] $H_u(x) [/mm] = x - 2 [mm] x_1 \cdot [/mm] u = [mm] \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} [/mm] - [mm] \begin{pmatrix} 2 x_1 \\ 0 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} - x_1 \\ x_2 \end{pmatrix}$. [/mm]

In Worten ausgedrückt wird der [mm] $x_1$ [/mm] Anteil von $x$ auf sein Negatives geschickt, geometrisch wird der Vektor $x$ also an der $y$-Achse gespiegelt - das ist die zu $u$ senkrecht stehende Hyperebene.

Allgemein gilt im [mm] $\IR^n$ [/mm] immer, dass falls $x$ senkrecht auf $u$ steht, $x$ festbleibt (Eigenvektor zum Eigenwert 1), denn dann gilt [mm] $\langle [/mm] x, u [mm] \rangle [/mm] = 0$. Die von $u$ aufgespannte Gerade ist ebenfalls Eigenraum zum Eigenwert -1 (denn $u$ wird auf $-u$ geschickt).

Damit ist die Abbildung diagonalisierbar, denn es gibt eine Basis aus Eigenvektoren - alles klar? :-)

Gruß, Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]