matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikHorner-Schema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Horner-Schema
Horner-Schema < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Horner-Schema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Sa 14.11.2009
Autor: az118

Aufgabe
Gegeben ist das Polynom p4 durch
p4(x) = [mm] a4*x^{4} [/mm] + [mm] a3*x^{3} [/mm] + [mm] a2*x^{2} [/mm] + a1*x + a0.
Berechnen Sie durch das vollständige Horner-Schema an der Stelle μ = −1 alle Koeffizienten
von pi(x), i = 1, . . . , 4, wenn von p4(x) bekannt ist, dass a4 = a0 = 2 und a1 +a2 +a3 = 3 gilt.
Außerdem sind bekannt p4(−1) = 3 und p3(−1) = −10
(pk(x) = pk−1(x)(x − μ) + pk(μ)).

Hallo, ich habe mal versucht die Aufgabe zu bearbeiten, aber da stimmt was nicht. Also ich habe a1=a2=a3=1 gesetzt und das war wahrscheinlich schon falsch, weil wenn ich das Horner-Schema jetzt anwende, bekomme ich zwar auch p4(-1)=3 raus aber nicht p3(-1)=-10 ???
Weiß nicht wie ich jetzt die Koeffizienten raus bekomme?

        
Bezug
Horner-Schema: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Di 17.11.2009
Autor: pi-roland

Hallo,

recht hast du. Es war falsch, einfach [mm] \(a_1=a_2=a_3=1\) [/mm] zu setzen. Du sollst ja die Koeffizienten erst bestimmen.
Was klar ist, ist, dass [mm] \(a_0=a_4=2\) [/mm] schon bestimmt sind. Bleiben drei Unbekannte, die du mit Hilfe des Horner-Schemas lösen kannst.
Schreibe dieses einfach allgemein (mit [mm] \(a_1, a_2, a_3\)) [/mm] auf. Damit erhältst du eine weiter Gleichung. Nun noch [mm] \(p_3(x)\) [/mm] ins Schema pressen, ausrechnen und Gleichung aufschreiben.
Was du erhältst sind drei Gleichungen und drei Unbekannte... Sollte also kein Problem sein, das aufzulösen.
Viel Erfolg,


Roland.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]