Homomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:28 Di 24.03.2009 | Autor: | qaywertz |
Aufgabe | Welche Gruppenhomomorphismen existieren zwischen [mm] \IZ/15\IZ [/mm] und [mm] \IZ/16\IZ? [/mm] |
Leider finde ich bei obiger Aufgabe keinen so guten Ansatz. Wahrscheinlich ist die Teilerfremdheit von 15 und 16 wichtig, aber umsetzen kann ich das nicht.
Ich habs anfangs auch mal mit dem Homomorphiesatz probiert, der hat mir aber auch nicht geholfen.
Wäre also super wenn mir da jemand helfen kann
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:37 Di 24.03.2009 | Autor: | statler |
Hi! Und
> Welche Gruppenhomomorphismen existieren zwischen [mm]\IZ/15\IZ[/mm]
> und [mm]\IZ/16\IZ?[/mm]
> Leider finde ich bei obiger Aufgabe keinen so guten
> Ansatz. Wahrscheinlich ist die Teilerfremdheit von 15 und
> 16 wichtig, aber umsetzen kann ich das nicht.
> Ich habs anfangs auch mal mit dem Homomorphiesatz
> probiert, der hat mir aber auch nicht geholfen.
Aber genau der ist der richtige Ansatz! Der Kern muß eine U-Gruppe von Z/15 sein, da die Gruppe zyklisch ist, kennt man ihre U-Gruppen. Damit kann man dann die Ordnung des Bildes ausrechnen, was ja eine U-Gruppe von Z/16 sein muß. Die kennt man aus demselben Grunde ebenfalls alle. Et voilá,, es bleibt nur eine Möglichkeit übrig.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:25 Di 24.03.2009 | Autor: | qaywertz |
Die Untergruppen von Z/15Z sind doch alle Z/mZ bei denen m 15 teilt, oder? Also außer die trivialen noch Z/3Z und Z/5Z.
Bei Z/16Z gibt es dann entsprechend noch Z/2Z und Z/4Z.
Aber wie meinst du das denn mit "die Ordnung des Bildes ausrechnen"?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:48 Di 24.03.2009 | Autor: | Katla |
[mm] $\forall\varphi:\IZ/15\IZ\to\IZ/16\IZ$ [/mm] gilt mit dem Homomorphiesatz [mm] $Bi\varphi\cong\IZ/15\IZ/ Ker\varphi$. [/mm] Also [mm] $|Bi\varphi|=[\IZ/15\IZ [/mm] : [mm] Ker\varphi]$ [/mm] teilt [mm] $|\IZ /15\IZ|$. [/mm] Außerdem ist [mm] $Bi\varphi \subseteq\IZ/16\IZ$ [/mm] und deshalb [mm] $|Bi\varphi|$ [/mm] teilt [mm] $|\IZ/16\IZ|$.
[/mm]
Damit kannst du die Ordnung des Bildes ausrechnen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:53 Di 24.03.2009 | Autor: | pelzig |
Hallo,
Hat man einen Homomorphismus [mm] $\phi:\IZ/15\IZ\to\IZ/16\IZ$, [/mm] so ist [mm] $\phi$ [/mm] offenbar durch [mm] $\phi(1)$ [/mm] vollständig bestimmt, denn weil [mm] $\IZ/15\IZ$ [/mm] zyklisch ist, lässt sich jedes [mm] $x\in\IZ/15\IZ$ [/mm] schreiben als [mm] $k\cdot [/mm] 1$ für ein [mm] $k\in\IN$ [/mm] und somit ist [mm] $\phi(x)=k\phi(1)$. [/mm] Nun ist aber 1=16 in [mm] $\IZ/15\IZ$, [/mm] d.h. es muss [mm] $\phi(1)=\phi(16)=16\phi(1)\Rightarrow 15\phi(1)=0$ [/mm] sein, d.h. die Ordnung von [mm] $\phi(1)$ [/mm] muss 15 teilen, und auch 16 nach dem Satz von Langrange, also muss die Ordnung von [mm] $\phi(1)$ [/mm] gleich 1 sein wegen der Teilerfremdheit, d.h. [mm] $\phi(1)=1$ [/mm] und somit [mm] $\phi\equiv [/mm] 1$.
Gruß, Robert
|
|
|
|