matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperHomomorphiesatz - Aufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Homomorphiesatz - Aufgabe
Homomorphiesatz - Aufgabe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphiesatz - Aufgabe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:31 So 31.10.2010
Autor: GreatBritain

Aufgabe
Seien $x, n [mm] \in \IZ$. [/mm] Zeigen Sie, dass es genau einen Gruppenhomomorphismus [mm] $\phi: \IZ [/mm] / [mm] n\IZ \rightarrow \IZ [/mm] / [mm] n\IZ$ [/mm] gibt mit der Eigenschaft, dass das Diagramm
[mm] $$\begin{xy} \xymatrix{ \IZ \ar[r]^{\cdot x} \ar[d]_{can} & \IZ \ar[d]^{can} \\ \IZ/n\IZ \ar[r]_{\phi} & \IZ/n\IZ } \end{xy}$$ [/mm]

(ok, funktioniert nicht so wie gehofft; oben steht links und rechts jeweils [mm] $\IZ$, [/mm] vermunden mit Pfeil, auf dem [mm] $\cdot [/mm] x$ steht. Von jedem [mm] $\IZ$ [/mm] geht jeweils ein Pfeil mit $can$ nach unten. Unten steht dann links und rechts jeweils [mm] $\IZ/n\IZ$, [/mm] wiederum verbunden mit Pfeil beschriftet mit [mm] $\phi$) [/mm]

kommutiert. Zeigen Sie, dass [mm] $\phi$ [/mm] ein Isomorphismus ist genau dann, wenn $ggT(x, n) = 1$ gilt.





hier mal meine Ansaätze

[mm] $\IZ \to \IZ$ [/mm] mit diesem [mm] $\cdot [/mm] x$ ist intuitiv ein Gruppenhomomorphismus - muss ich das noch irgendwie beweisen, wenn ja, wie gehe ich da vor?

In der letzten Vorlesung haben wir als Satz aufgeschrieben, dass die kanonische Abbildung ein Gruppenhomomorphismus ist, hier mit Kern [mm] $n\IZ$. [/mm]

Naja, und im letzten Schritt gibt es nach Homomorphiesatz ja genau einen Homomorphismus, so dass dieses Diagramm kommutiert.

Ich nehme mal an, das ist viiiiiiel zu einfach gedacht für diese Aufgabe - ich hab ja nix weiter gemacht als 2 Sätze der letzten Vorlesung hingeschrieben...

zum zweiten Teil:
zu zeigen: [mm] $\phi$ [/mm] Isomorphismus [mm] $\Leftrightarrow$ [/mm] ggt$(x, n) = 1$

Isomorphismus bedeutet ja biijektiver Homomorphismus.
Also ist [mm] $\phi$ [/mm] auch surjektiv,
d.h. es existiert $a [mm] \in \IZ$ [/mm] mit [mm] $\phi(a+n\IZ) [/mm] = 1 + [mm] n\IZ [/mm] = [mm] ax+n\IZ \Leftrightarrow [/mm] a,b [mm] \in \IZ$ [/mm] mit $1=ax + bn [mm] \Leftrightarrow [/mm] ggT(x,n) = 1$

        
Bezug
Homomorphiesatz - Aufgabe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 05.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]