matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHomomorphe algebr. Strukturen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Homomorphe algebr. Strukturen
Homomorphe algebr. Strukturen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphe algebr. Strukturen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 28.11.2005
Autor: Leoric

Hi @ll,

daß mein Prof mich liebt, werdet ihr sicher selbst merken, wenn ihr folgende Aufgabe gelesen habt:

Es seien h1 und h2 Homomorphismen von einer algebraischen Struktur (A, [mm] \odot) [/mm] zu einer anderen algebraischen Struktur (B, [mm] \* [/mm] ). Weiter sei g: A -> B eine Funktion mit g(a) = h1(a) [mm] \* [/mm] h2(a) für alle a [mm] \in [/mm] A.

1. Zeigen Sie, daß g ein Homomorphismus von (A, [mm] \odot) [/mm] nach (B, [mm] \*) [/mm] ist, sofern (B, [mm] \*) [/mm] eine Halbgruppe ist, für die a [mm] \* [/mm] b = b [mm] \* [/mm] a für alle a,b [mm] \in [/mm] B gilt.

2. Zeigen Sie, daß g im allgemeinen kein Homomorphismus mehr ist, wenn (B, [mm] \*) [/mm] eine Halbgruppe ist, aber a [mm] \* [/mm] b = b [mm] \* [/mm] a nicht für alle a,b [mm] \in [/mm] B gilt.

Irgendwie stehe ich hier total auf dem Schlauch. Dieses Mengenhickhack wird für mich wohl immer unergründlich bleiben.  

Vielleicht weiß jemand von euch Rat ?!

Bye,
Leoric

        
Bezug
Homomorphe algebr. Strukturen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mo 28.11.2005
Autor: felixf


> daß mein Prof mich liebt, werdet ihr sicher selbst merken,
> wenn ihr folgende Aufgabe gelesen habt:

Er muss dich sehr lieben :-)

> Es seien h1 und h2 Homomorphismen von einer algebraischen
> Struktur (A, [mm]\odot)[/mm] zu einer anderen algebraischen Struktur
> (B, [mm]\*[/mm] ). Weiter sei g: A -> B eine Funktion mit g(a) =
> h1(a) [mm]\*[/mm] h2(a) für alle a [mm]\in[/mm] A.
>
> 1. Zeigen Sie, daß g ein Homomorphismus von (A, [mm]\odot)[/mm] nach
> (B, [mm]\*)[/mm] ist, sofern (B, [mm]\*)[/mm] eine Halbgruppe ist, für die a
> [mm]\*[/mm] b = b [mm]\*[/mm] a für alle a,b [mm]\in[/mm] B gilt.

Was musst du hier denn nachrechnen? Hast du es schonmal versucht? Dabei musst du benutzen, dass die Verknuepfung * kommutativ und assoziativ ist (was bedeutet das?).

Wie weit bist du denn gekommen?

> 2. Zeigen Sie, daß g im allgemeinen kein Homomorphismus
> mehr ist, wenn (B, [mm]\*)[/mm] eine Halbgruppe ist, aber a [mm]\*[/mm] b = b
> [mm]\*[/mm] a nicht für alle a,b [mm]\in[/mm] B gilt.

Was kennst du denn so an nichtkommutativen Halbgruppen? (Eine nichtkommutative Gruppe ist auch eine nichtkommutative Halbgruppe.)

HTH Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]