matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHomogne Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Homogne Reihe
Homogne Reihe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogne Reihe: tipp
Status: (Frage) beantwortet Status 
Datum: 23:08 Fr 11.11.2005
Autor: Reute

Also ich habe diese Aufgabe und diesen ansatz komme aber nicht weiter:
Aufgabe:
Eine Gleichung der Form
[mm] a_{1}X_{1} [/mm] + [mm] a_{2}X_{2}+ [/mm] .... + [mm] a_{n}X_{n} [/mm] = 0
in den unbekannten [mm] X_{i} [/mm] mit Koeffizienten [mm] a_{1},...,a_{n} \in\IC [/mm] nennt man eine komplexe homogene lineare Gleichung.
Zeigen Sie: Wenn zwei n-Tupel u,v [mm] \in\IC^{n} [/mm] genau dieselben komplexen homogenen linearen Gleichungen erfüllen, dann sind sie linear abhängig (über [mm] \IC) [/mm]

Ansatz
also wenn beide gleichungen glecih null sind kann man sie gleichsetzten:
1) [mm] a_{1}u_{1} [/mm] + [mm] a_{2}u_{2}+ [/mm] .... + [mm] a_{n}u_{n} [/mm] = 0
2) [mm] a_{1}v_{1} [/mm] + [mm] a_{2}v_{2}+ [/mm] .... + [mm] a_{n}v_{n} [/mm] = 0
[mm] \Rightarrow a_{1}u_{1} [/mm] + [mm] a_{2}u_{2}+ [/mm] .... + [mm] a_{n}u_{n} [/mm] = [mm] a_{1}v_{1} [/mm] + [mm] a_{2}v_{2}+ [/mm] .... + [mm] a_{n}v_{n} [/mm]
[mm] \Rightarrow [/mm] kann ich [mm] a_{1} [/mm] usw ausklammern, also
[mm] a_{1}(u_{1}-v_{1})+ [/mm] .... + [mm] a_{n}(u_{n}-v_{n}) [/mm] = 0

und wie gehe ich jetzt weiter muss ich jetzt untersuchen wann die Komponenten in der klammer gleich null sind also
[mm] u_{1}-v_{1}... [/mm] =0
also z.B ist dann [mm] u_{1}=v_{1} [/mm] nur gleich wenn bei einem Komponeten ein
[mm] \lambda [/mm] steht [mm] \Rightarrow u_{1}=\lambda v_{1} [/mm] und wie beweise ich das??
oder ist mein Ansatz falsch??
Gruß


        
Bezug
Homogne Reihe: Widerspruch
Status: (Antwort) fertig Status 
Datum: 14:31 So 13.11.2005
Autor: mathemaduenn

Hallo Reute,
Versuchen würde ich hier einen Widerspruchsbeweis.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]