matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenHomogene Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Homogene Funktion
Homogene Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogene Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:04 Sa 06.06.2009
Autor: cooly

Aufgabe
f(x,y,z) = [mm] \bruch{x^{b}}{x} [/mm] + 6xyz - [mm] \bruch{2}{3}z^{a+2} [/mm]

Für welche a,b ist die Funktion homogen?

Ich habe dann die Funktion [mm] \lambda [/mm] und der jeweiligen Variablen aufgestellt und vereinfacht:

[mm] f(\lambda x,\lambda y,\lambda [/mm] z) = [mm] \bruch{\lambda^{b} x^{b}}{\lambda x} [/mm] + [mm] 6xyz\lambda^{3} [/mm] - [mm] \bruch{2}{3} (\lambda z)^{a+2} [/mm]
= [mm] \lambda^{b-1} [/mm] * [mm] x^{b-1} [/mm] + [mm] 6xyz\lambda^{3} [/mm] - [mm] \bruch{2}{3} \lambda^{a+2} z^{a+2} [/mm]

Damit die Funktion homogen wird, muss ich das [mm] \lambda [/mm] komplett ausklammern können. Da [mm] \lambda^{3} [/mm] vorkommt, ist [mm] \lambda [/mm] ausklammerbar mit b=4 und a=1.

Gibt es noch eine weitere Lösung oder wird die Funktion nur für b=4 und a=1 homogen?

Vielen Dank!

Gruß
cooly

        
Bezug
Homogene Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Sa 06.06.2009
Autor: Gonozal_IX

Hiho,

deine Lösung stimmt, dann wär die Funktion homogen von welchem Grad?

> Gibt es noch eine weitere Lösung oder wird die Funktion nur für b=4 und a=1 homogen?

Naja, kannst du noch andere Potenzen von [mm] \lambda [/mm] ausklammern, so dass [mm] \lambda [/mm] wegfällt in der Klammer?

MFG,
Gono.

Bezug
                
Bezug
Homogene Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:11 So 07.06.2009
Autor: cooly

Vielen Dank für die Antwort.

Dann wird die Funktion nur homogen (und zwar vom Grad 3) für b=4 und a=1.

Gruß
cooly

Bezug
                        
Bezug
Homogene Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 So 07.06.2009
Autor: Gonozal_IX

korrekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]