matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenHomogene DGL n.Ord.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Homogene DGL n.Ord.
Homogene DGL n.Ord. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogene DGL n.Ord.: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:16 So 20.09.2009
Autor: uecki

Hallo,

zur homogenen DGL n.Ord. hab ich folgendes:
DGL: [mm] u^{(n)} [/mm] + [mm] a_{n-1}u^{(n-1)}+ [/mm] ... + [mm] a_{0}u^{0} [/mm] = 0

-die DGL ist linear in u(t)
-es gilt das Superpositionsprinzip: Ist s(t) eine Linearkombination aus stetigen Funktionen, so ergibt sich die partikuläre Lösung aus der Summe der Lösungen für die Summanden der Linearkombination.
-die Summe der Lösungen und Vielfache der Lösungen sind Lösung der DGL
-die Lösung ist beliebig oft differenzierbar, wenn sie mindestens (n-1)-mal differenzierbar ist. Das ergibt sich aus der expliziten Darstellung der DGL:
[mm] u^{(n)}= [/mm] - [mm] a_{n-1}u^{(n-1)}- [/mm] ... - [mm] a_{0}u^{0} [/mm]
[mm] u^{(n+k)}= [/mm] - [mm] a_{n-1}u^{(n+k-1)}- [/mm] ... - [mm] a_{0}u^{k} [/mm]

Verstehe ich auch alles, bis auf eines.
Warum gilt das Superpositionsprinzip??? Wir reden doch hier von einer homogenen DGL und die hat doch, so wie ich es bisher gelernt hab, keine Störfunktion, oder hab ich was falsch verstanden?

LG

        
Bezug
Homogene DGL n.Ord.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 So 20.09.2009
Autor: MathePower

Hallo uecki,

> Hallo,
>  
> zur homogenen DGL n.Ord. hab ich folgendes:
>  DGL: [mm]u^{(n)}[/mm] + [mm]a_{n-1}u^{(n-1)}+[/mm] ... + [mm]a_{0}u^{0}[/mm] = 0
>  
> -die DGL ist linear in u(t)
>  -es gilt das Superpositionsprinzip: Ist s(t) eine
> Linearkombination aus stetigen Funktionen, so ergibt sich
> die partikuläre Lösung aus der Summe der Lösungen für
> die Summanden der Linearkombination.


Üblicherweise wird die Störfunktion mit [mm]s\left(t\right)[/mm] bezeichnet.


>  -die Summe der Lösungen und Vielfache der Lösungen sind
> Lösung der DGL
>  -die Lösung ist beliebig oft differenzierbar, wenn sie
> mindestens (n-1)-mal differenzierbar ist. Das ergibt sich
> aus der expliziten Darstellung der DGL:
>  [mm]u^{(n)}=[/mm] - [mm]a_{n-1}u^{(n-1)}-[/mm] ... - [mm]a_{0}u^{0}[/mm]
> [mm]u^{(n+k)}=[/mm] - [mm]a_{n-1}u^{(n+k-1)}-[/mm] ... - [mm]a_{0}u^{k}[/mm]
>
> Verstehe ich auch alles, bis auf eines.
>  Warum gilt das Superpositionsprinzip??? Wir reden doch
> hier von einer homogenen DGL und die hat doch, so wie ich
> es bisher gelernt hab, keine Störfunktion, oder hab ich


Das ist auch richtig, was Du da geschrieben hast.


> was falsch verstanden?


Das Superpositionsprinzip gilt hier nur für die Störfunktion [mm]s\left(t\right)[/mm].

Demnach muß die DGL so lauten:

[mm]u^{(n)} a_{n-1}u^{(n-1)}+ ... + a_{0}u^{0} = s\left(t\right)[/mm]

Es kann sich also um einen Fehler in Deinen Aufzeichnungen handeln.


>  
> LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]