matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHohe Potenzen in  \IC
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Hohe Potenzen in \IC
Hohe Potenzen in \IC < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hohe Potenzen in \IC: in Polarform
Status: (Frage) beantwortet Status 
Datum: 14:11 Sa 12.11.2005
Autor: Reaper

Hallo....
geg.: Man berechne klassisch und in Polarform:

z= ( (1 +  [mm] \wurzel{3}*i) [/mm] / (2+2i) [mm] )^{3} [/mm]

klassisch ists kein Problem (hoffentlich) ...da kommt 1/2 + i/2 = z heraus

in Polarform bin ich das Ganze so angegangen:

1 +  [mm] \wurzel{3}*i [/mm] in Polarkoordinaten :

|z | =  [mm] \wurzel{1² + \wurzel{3} ²} [/mm]
|z| = 2
a = |z| * cos ( [mm] \delta) [/mm]
1 = 2 * cos ( [mm] \delta) [/mm]

[mm] \delta [/mm] = arccos (1/2) = 60 Grad =  [mm] \pi [/mm] / 3
So...und genau um die Grad gehts....wie kann ich ohne Taschenrechner
wissen dass arccos (1/2) = 60 Grad =  [mm] \pi [/mm] / 3 lautet.....

Bei 2 + 2i:

|z| =  [mm] \wurzel{8} [/mm]
2 = 2 * cos ( [mm] \delta) [/mm]
[mm] \delta [/mm] = arccos (2/2) = 0

...wie kann ich die Grad speziell beim ersten Term 1 +  [mm] \wurzel{3}*i [/mm] ohne
TI92 wissen?

So nun habe ich also 2 komplexe Zahlen in Polarform dragestellt:

[mm] z_{1} [/mm] = 2(cos  [mm] \pi/3 [/mm] + i*sin  [mm] \pi/3 [/mm] )
[mm] z_{2} [/mm] =  [mm] \wurzel{8} [/mm] (cos  0 + i*sin  0 )


2(cos  [mm] \pi/3 [/mm] + i*sin  [mm] \pi/3 )^{3} [/mm] = 2(cos  [mm] \pi/3 [/mm] + i*sin*3*  [mm] \pi/3 [/mm] )
[mm] \wurzel{8} [/mm] (cos  0 + i*sin  0 ) ^{3} = [mm] \wurzel{8}(cos [/mm]  0 + i*3*sin  0 ) = [mm] \wurzel{8} [/mm] = [mm] z_{2} [/mm]

[mm] z_{1} [/mm] = 2(cos  [mm] \pi/3 [/mm] + i*sin*3*  [mm] \pi/3 [/mm] ) =  2(cos  [mm] \pi/3 [/mm] + i*sin*  [mm] \pi [/mm] ) =  
2(cos  [mm] \pi/3) [/mm]

Also 2(cos  [mm] \pi/3)/\wurzel{8} [/mm] .....und was fang ich jetzt mit dem Term an
um eine anständige komplexe Zahl herauszubekommen?

mfg,
Hannes


        
Bezug
Hohe Potenzen in \IC: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 12.11.2005
Autor: Leopold_Gast

So...und genau um die Grad gehts....wie kann ich ohne Taschenrechner
wissen dass arccos (1/2) = 60 Grad =  [mm]\pi[/mm] / 3 lautet.....


Es gibt Dinge, die sollte man wissen. Die Frage ist so ähnlich wie

"Wie kann ich ohne Taschenrechner wissen, daß die Wurzel von 81 gerade 9 ist?"

Und hier geht es um Elementargeometrie. Tip: Halbiere ein gleichseitiges Dreieck mit Seitenlänge 1 und verwende die Definiton von Sinus/Cosinus im rechtwinkligen Dreieck.

Bezug
                
Bezug
Hohe Potenzen in \IC: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:35 Mo 14.11.2005
Autor: Reaper

Hallo....ach ja ich bin draufgekommen dass die komplexen Zahlen gar nicht stimmen...richtig ist:

[mm] z_{1} [/mm] = 2* (cos  [mm] \pi/3 [/mm] + i sin  [mm] \pi/3) [/mm]
[mm] z_{2} [/mm] =  [mm] \wurzel{8}* [/mm] (cos  [mm] \pi/4 [/mm] + i sin  [mm] \pi/4) [/mm]

So und was mach ich jetzt muss ich:
[mm] z_{1} [/mm] =  (2* (cos  [mm] \pi/3 [/mm] + i sin  [mm] \pi/3))^{3} [/mm] = 8 * cos  [mm] \pi/3 [/mm]
[mm] z_{2} [/mm] =  [mm] (\wurzel{8}* [/mm] (cos  [mm] \pi/4 [/mm] + i sin  [mm] \pi/4))^{3} [/mm] =  
[mm] \wurzel{8}^{3}*(cos \pi/4 [/mm] + i sin 3* [mm] \pi/4) [/mm]

So und wie rechne ich jetzt [mm] z_{1} [/mm] / [mm] z_{2} [/mm] ?

mfg,
Hannes


Bezug
                        
Bezug
Hohe Potenzen in \IC: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 09:10 Mo 14.11.2005
Autor: Loddar

Guten Morgen Hannes!


> [mm]z_{1}[/mm] = 2* (cos  [mm]\pi/3[/mm] + i sin  [mm]\pi/3)[/mm]
> [mm]z_{2}[/mm] =  [mm]\wurzel{8}*[/mm] (cos  [mm]\pi/4[/mm] + i sin  [mm]\pi/4)[/mm]

[ok]


> So und was mach ich jetzt muss ich:
> [mm]z_{1}[/mm] =  (2* (cos  [mm]\pi/3[/mm] + i sin  [mm]\pi/3))^{3}[/mm] = 8 * cos  [mm]\pi/3[/mm]

[notok] Hier fehlt doch noch was ...

[mm] $z_1^3 [/mm] \ = \ [mm] 2^3 [/mm] * [mm] \left[\cos\left(\bruch{\pi}{3}*3\right) + i*\sin\left(\bruch{\pi}{3}*3\right)\right] [/mm] \ = \ 8 * [mm] \left[\cos\left(\pi\right) + i*\sin\left(\pi\right)\right]$ [/mm]


> [mm]z_{2}[/mm] =  [mm](\wurzel{8}*[/mm] (cos  [mm]\pi/4[/mm] + i sin  [mm]\pi/4))^{3}[/mm] =  [mm]\wurzel{8}^{3}*(cos \pi/4[/mm] + i sin 3* [mm]\pi/4)[/mm]

[notok] Fast richtig!

Auch beim [mm] $\cos$ [/mm] muss es natürlich [mm] $\bruch{\red{3}\pi}{4}$ [/mm] heißen. Für [mm] $\wurzel{8}^3$ [/mm] kann man auch schreiben [mm] $16*\wurzel{2}$ [/mm] .

Und es handelt sich auch um [mm] $z_2^{\red{3}}$ [/mm] ...


  

> So und wie rechne ich jetzt [mm]z_{1}[/mm] / [mm]z_{2}[/mm] ?

Hier verwenden wir ebenfalls die Moivre-Formel:

[mm] $\bruch{z_1}{z_2} [/mm] \ = \ [mm] \bruch{r_1 * \left[\cos\left(\varphi_1\right) + i*\sin\left(\varphi_1\right)\right]}{r_2 * \left[\cos\left(\varphi_2\right) + i*\sin\left(\varphi_2\right)\right]} [/mm] \ = \ [mm] \bruch{r_1}{r_2} [/mm] * [mm] \left[\cos\left(\varphi_1-\varphi_2\right) + i*\sin\left(\varphi_1-\varphi_2\right)\right]$ [/mm]


[guckstduhier]  .  .  .  .   []Rechnen mit komplexen Zahlen


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]