matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLerngruppe LinAlgHöhere Ma1 Hausübung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lerngruppe LinAlg" - Höhere Ma1 Hausübung
Höhere Ma1 Hausübung < Lerngruppe LinAlg < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhere Ma1 Hausübung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 07:53 Di 05.12.2017
Autor: DerMatheGruenschnabel

Aufgabe
Es sei f ein Polynom vom Grad 2 (d.h. f(x) = ax² + bx + c, a 6 ungleich 0) mit Definitionsbereich R. Geben Sie Koeffizienten a,b,c an, so dass die folgenden Bedingungen erfüllt sind.
• f hat in ihrer globalen Maximalstelle den Funktionswert 10.
• f(0) = 1.
• f'(1) = g'(1) mit g differenzierbar und es gilt: −(x−1)² −g(x) = e hoch g mal x.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Guten Tag, finde heute nicht den richtigen Denkansatz um die Aufgabe zu lösen.....Weiß Jemand um Rat?Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Höhere Ma1 Hausübung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Di 05.12.2017
Autor: fred97


> Es sei f ein Polynom vom Grad 2 (d.h. f(x) = ax² + bx + c,
> a 6 ungleich 0) mit Definitionsbereich R. Geben Sie
> Koeffizienten a,b,c an, so dass die folgenden Bedingungen
> erfüllt sind.
> • f hat in ihrer globalen Maximalstelle den Funktionswert
> 10.
> • f(0) = 1.
> • f'(1) = g'(1) mit g differenzierbar und es gilt:
> −(x−1)² −g(x) = e hoch g mal x.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Guten Tag, finde heute nicht den richtigen Denkansatz um
> die Aufgabe zu lösen.....Weiß Jemand um Rat?Ich habe
> diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.


Aus f(0)=1 folgt schon mal c=1.

Es ist f'(x)=2ax+b. Berechne nun die Nullstelle [mm] x_0 [/mm] von f'. Dann haben wir [mm] f(x_0)=10. [/mm] Das liefert eine Gleichung für a und b.

Die Bedingung −(x−1)² −g(x) = e hoch g mal x ist nicht klar !

Bedeutet das [mm] $-(x-1)^2-g(x)=e^{g(x)}$ [/mm] ? oder  [mm] $-(x-1)^2-g(x)=e^{g(x)}x$ [/mm]  oder.....

Kläre das, dann sehen wir weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]