matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungHöhere Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Höhere Ableitungen
Höhere Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhere Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 31.05.2009
Autor: splin

Aufgabe
Gegeben sei die Funktion f mit f(x) = xsin x. Bestimmen Sie die vierzehnte Ablei-
tung von f,
d.h. berechnen Sie f(14)(x).

Hallo,

wie geht man bei Berechnng von höheren Ableitungen vor?

Gibt es eine allg. Formel?



        
Bezug
Höhere Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 So 31.05.2009
Autor: Steffi21

Hallo, beginne mit der Berechnung einiger Ableitungen (1., 2., 3., ...), du erkennst dann eine Gesetzmäßigkeit, Steffi

Bezug
        
Bezug
Höhere Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 So 31.05.2009
Autor: ms2008de

Hallo,
es gibt jedoch auch die sogenannte Leibniz´sche Formel der n-ten Ableitung , die sieht folgendermaßen aus:
[mm] (f*g)^{(n)}= \summe_{k=0}^{n} \vektor{n \\ k} [/mm] * [mm] f^{(k)}*g^{(n-k)}. [/mm]
Damit kriegst dus auch relativ schnell heraus.

Viele Grüße

Bezug
        
Bezug
Höhere Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 So 31.05.2009
Autor: splin

Ich habe sechs Ableitungen gerechnet, dann fängt es wieder von vorne an:
f(X)= xsinx
f´(x)=1*sinx + x*cosx
f´´(x)= cosx + 1*cosx + x*(-sinx)= 2cosx - x*sinx
f´´´(x)= 2*(-sinx) - sinx + x*cosx= -3sinx + x*cosx
f´´´´(x)= -3cosx + cosx + x*(-sinx)= -2cos(x) - x*sinx
f^(5)(x)= -3sinx + x*cosx
f^(6)(x)=-2cosx-x*sinx
f^(7)(x)=sinx + x*cosx

Konnte bitte jemand schauen ob ich die Produktregel richtig angewendet habe.

Und wie geht das mit der Leibnitz-Formel ?
Was ist n und was ist k ?
Und was mache ich mit n über k ?

Bezug
                
Bezug
Höhere Ableitungen: Hinweise
Status: (Antwort) fertig Status 
Datum: 20:07 So 31.05.2009
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo splin!


Deine Rechnungen sehen gut aus.

Mit der o.g. Leibniz-Formel gilt in Deinem Falle:
$$n \ = \ 14$$
$$f(x) \ = \ x$$
$$g(x) \ = \ \sin(x)$$

$\vektor{n\\k}}$ ist der []Binomialkoeffizient


Gruß
Loddar


Bezug
                
Bezug
Höhere Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 So 31.05.2009
Autor: ms2008de

Bei deiner 3. Ableitung is ein kleiner Vorzeichenfehler, denn -x*sinx nach x abgeleitet sollte -sinx -x*cos x sein. Somit stimmen dann auch die restlichen als Folgefehler nicht mehr.

Viele Grüße

Bezug
                
Bezug
Höhere Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 So 31.05.2009
Autor: splin

Danke für den Hinweis, ich habe nähmlich immer falsch gerechnet.

falsch:  -xsinx--> -sinx+cosx
Habe nur bei -x das Vorzeichen beachtet und sinx war immer positiv für mich.Da in der Formel für kettenregel + f(x)*g´(x) steht.

richtig: -xsinx--> -sinx+(-x*cosx) = -sinx - x*cosx

Jetzt weiß ich wo mein Fehler war.


Aber mit der Leibnitz-Formel komme ich gar nicht klar.
Was ist mein k ?
Wenn ich für k=0 einsetze, wie es in der Formel steht, dann muss ich trotzem bei g die 14-te Ableitung rechnen.

Wie gesagt blicke nicht dahinter, konnte jemand vielleicht an einem Beispiel erleutern?

Bezug
                        
Bezug
Höhere Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 So 31.05.2009
Autor: ms2008de

ja klar musst du die 14. Ableitung von g ausrechnen, aber wir wissen doch folgendes: Wenn du für g(x)=sinx nimmst, also [mm] g^{(0)} [/mm] (x) =sinx, dann is [mm] g^{(1)} [/mm] (x)= cosx, [mm] g^{(2)} [/mm] (x)= -sinx, [mm] g^{(3)} [/mm] (x)= -cos x und [mm] g^{(4)} [/mm] (x)= sinx.
[mm] \Rightarrow g^{(0)} [/mm] (x) = [mm] g^{(4)} [/mm] (x) = [mm] g^{(8)} [/mm] (x) = [mm] g^{(12)} [/mm] (x) = sinx, also is doch [mm] g^{(14)} [/mm] (x)= -sinx, da sich diese von mir anfangs gegeben 4 Ableitungen immer wieder wiederholen.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]