matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteHöhensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Höhensatz
Höhensatz < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhensatz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:50 Mo 24.11.2008
Autor: jennynoobie

[Dateianhang nicht öffentlich]

Aufgabe
Beweisen Sie den Höhensatz: h²=p*q
h,p,q bezeichnen die Längen der Höhe und der beiden Höhnabschnitte im rechtwinkligen Dreieck A,B,C. Verwenden Sie dazu das Skalarprodukt.

Lösungsweg:

[mm] \vec{a}*\vec{b} [/mm] = 0

0 = [mm] |\vec{p}-\vec{h}| |-\vec{h}-\vec{q}| [/mm]
= [mm] (\vec{p}-\vec{h}) (-\vec{h}-\vec{q}) [/mm]
= [mm] |\vec{h²}|-|\vec{h}||\vec{p}|+|\vec{h}||\vec{p}|-|\vec{p}||\vec{q}| [/mm]
= [mm] |\vec{h²}| [/mm] - [mm] |\vec{p}||\vec{q}| [/mm]
= [mm] \vec{h²} [/mm] - [mm] \vec{p}\vec{q} \gdw [/mm] h² = pq

Ist das ein, der Aufgabe entsprechend, korrekter Beweis?

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Höhensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 24.11.2008
Autor: M.Rex

Hallo

Die Beweisidee ist korrekt, aber du hast einige Formalfehler drin.
Also:

[mm] \vec{a}*\vec{b}=0 [/mm]
[mm] \gdw (\vec{h}-\vec{p})*(-\vec{h}-\vec{q})=0 [/mm]
[mm] \gdw -\vec{h}*\vec{h}+\overbrace{\vec{p}*\vec{h}}^{=0(da:\vec{p}\perp\vec{h})}-\overbrace{\vec{h}*\vec{q}}^{=0(da:\vec{p}\perp\vec{h})}+\vec{p}*\vec{q}=0 [/mm]
[mm] \gdw -\vec{h}*\vec{h}+\vec{p}*\vec{q}=0 [/mm]
[mm] \gdw \vec{h}*\vec{h}=\vec{p}*\vec{q} [/mm]
[mm] \gdw h_{1}²+h_{2}²+...+h_{n}²=\red{p_{1}q_{1}+p_{2}q_{2}+...+p_{n}q_{n}} [/mm]
[mm] \gdw |\vec{h}|²=\red{|\vec{p}|*|\vec{q}|} [/mm]

Als Nebenrechnung zu dem rot markierten Teil musst du noch zeigen, dass
[mm] |\vec{p}|*|\vec{q}|=p_{1}q_{1}+p_{2}q_{2}+...+p_{n}q_{n} [/mm]
Also:
[mm] |\vec{p}|*|\vec{q}| [/mm]
[mm] =\wurzel{p_{1}²+p_{2}²+...+p_{n}²}*\wurzel{q_{1}²+q_{2}²+...+q_{n}²} [/mm]
[mm] =\vdots [/mm]
[mm] =p_{1}q_{1}+p_{2}q_{2}+...+p_{n}q_{n} [/mm]

Marius

Bezug
                
Bezug
Höhensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mo 24.11.2008
Autor: jennynoobie

Danke dir Marius!

Bezug
                
Bezug
Höhensatz: Bahnhof
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Mo 24.11.2008
Autor: Al-Chwarizmi


> Als Nebenrechnung zu dem rot markierten Teil musst du noch
> zeigen, dass
>  [mm]|\vec{p}|*|\vec{q}|=p_{1}q_{1}+p_{2}q_{2}+...+p_{n}q_{n}[/mm]
>  Also:
>  [mm]|\vec{p}|*|\vec{q}|[/mm]
>  
> [mm]=\wurzel{p_{1}²+p_{2}²+...+p_{n}²}*\wurzel{q_{1}²+q_{2}²+...+q_{n}²}[/mm]
>  [mm]=\vdots[/mm]
>  [mm]=p_{1}q_{1}+p_{2}q_{2}+...+p_{n}q_{n}[/mm]


       [kopfschuettel][kopfschuettel][kopfschuettel]


hallo Marius,

ich verstehe nicht, was deine [mm] h_1, [/mm] ... , [mm] h_n, p_1, [/mm] ... [mm] p_n, q_1, [/mm] ... , [mm] q_n [/mm]
in diesem Beweis (in der Ebene) überhaupt sollen !

Bezug
                        
Bezug
Höhensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Mo 24.11.2008
Autor: M.Rex

Hallo

Hast recht, hier sind wir im [mm] \IR^{2}, [/mm] wer lesen kann, ist klar im Vorteil.

Marius

Bezug
        
Bezug
Höhensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Mo 24.11.2008
Autor: weduwe


> [Dateianhang nicht öffentlich]
>
> Beweisen Sie den Höhensatz: h²=p*q
>  h,p,q bezeichnen die Längen der Höhe und der beiden
> Höhnabschnitte im rechtwinkligen Dreieck A,B,C. Verwenden
> Sie dazu das Skalarprodukt.
>  Lösungsweg:
>  
> [mm]\vec{a}*\vec{b}[/mm] = 0
>  
> 0 = [mm]|\vec{p}-\vec{h}| |-\vec{h}-\vec{q}|[/mm]
>  =
> [mm](\vec{p}-\vec{h}) (-\vec{h}-\vec{q})[/mm]
>  =
> [mm]|\vec{h²}|-|\vec{h}||\vec{p}|+|\vec{h}||\vec{p}|-|\vec{p}||\vec{q}|[/mm]
>  = [mm]|\vec{h²}|[/mm] - [mm]|\vec{p}||\vec{q}|[/mm]
>  = [mm]\vec{h²}[/mm] - [mm]\vec{p}\vec{q} \gdw[/mm] h² = pq
>  
> Ist das ein, der Aufgabe entsprechend, korrekter Beweis?

ich hätte den gaul umgekehrt aufgezäumt.
mit deinen bezeichnungen hast du:

[mm] \vec{p}\cdot\vec{q}=(-\vec{h}-\vec{a})\cdot (-\vec{h}-\vec{b})=\vec{a}\cdot\vec{b}-\vec{c}\cdot\vec{h}+h^2=h^2 [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]