matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisHöhenberechung im Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Höhenberechung im Dreieck
Höhenberechung im Dreieck < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhenberechung im Dreieck: Höhe eines Dreiecks berechnen
Status: (Frage) beantwortet Status 
Datum: 15:20 So 09.10.2005
Autor: flowster

Heyho,
bin ganz frisch hier und schreibe morgen meine erste Matheklausur. Ich komme auch wunderbar mit dem Thema zurecht, aber eine Aufgabe im Buch stört mich. Die lautet wie folgt:

Berechne die Längen der drei Höhen des Dreiecks ABC.
a) A(0|0) B(3|2) C(-1|2)  
b) A(2|1) B(7|2) C(5|5)

Die Gleichungen für die Strecken AB, BC und AC zu formulieren ist nicht schwer und die orthogonale Steigung ist auch kein Problem, aber irgendwie kommen ganz andere Zahlen raus, als wie es unser Lehrer gerechnet hat. Es wäre schön, wenn jemand den kompletten Ablauf beschreiben könnte und seine Lösungen präsentieren würde.

Meine wären für a) Ha = 2 (verständlich) und Hb =  [mm] \wurzel[2]{21/25} [/mm]
und für b) Hc =  [mm] \wurzel[2]{7581/841} \approx [/mm] 3

Danke schon im voraus ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Höhenberechung im Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 09.10.2005
Autor: Sigrid

Hallo flowster,

[willkommenmr]

> Heyho,
>  bin ganz frisch hier und schreibe morgen meine erste
> Matheklausur. Ich komme auch wunderbar mit dem Thema
> zurecht, aber eine Aufgabe im Buch stört mich. Die lautet
> wie folgt:
>  
> Berechne die Längen der drei Höhen des Dreiecks ABC.
>  a) A(0|0) B(3|2) C(-1|2)  
> b) A(2|1) B(7|2) C(5|5)
>  
> Die Gleichungen für die Strecken AB, BC und AC zu
> formulieren ist nicht schwer und die orthogonale Steigung
> ist auch kein Problem, aber irgendwie kommen ganz andere
> Zahlen raus, als wie es unser Lehrer gerechnet hat. Es wäre
> schön, wenn jemand den kompletten Ablauf beschreiben könnte
> und seine Lösungen präsentieren würde.
>  
> Meine wären für a) Ha = 2 (verständlich) und Hb =  
> [mm]\wurzel[2]{21/25}[/mm]
>  und für b) Hc =  [mm]\wurzel[2]{7581/841} \approx[/mm] 3

Schade, dass du deine Zwischenergebnisse nicht angegeben hast, dann wäre es einfacher, die Stelle zu finden, wo dein Fehler liegt. Ich schreibe dir für die Höhe [mm] h_b [/mm] mal meine Zwischenergebnisse auf. Du kannst dann sehen, wo deine abweichen.

Gleichung von AC:
[mm] y= - 2x [/mm]

Gleichung von [mm] h_b: [/mm]
[mm] y = 0,5 x + 0,5 [/mm]

Schnittpunkt F(-0,2 ; 0,4)

Länge [mm] \overline{BF} [/mm]

[mm] = \wurzel{(3+0,2)^2+(2-0,4)^2)} [/mm]

[mm] = \wurzel{\bruch{320}{25}} = \bruch{8}{5} \cdot \wurzel{5} [/mm]

Vergleiche bitte einmal mit deinen Werten. Wenn du Fragen hast, melde dich bitte.

Gruß
Sigrid

>  
> Danke schon im voraus ;)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Höhenberechung im Dreieck: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:04 So 09.10.2005
Autor: flowster

Deine Rechnung scheint plausibel und ich kann sie nachvollziehen, aber wenn du die Länge der Strecke berechnest rechnest du  [mm] \wurzel{(x_{a} - x_{b}) usw...} [/mm] und nicht [mm] \wurzel{(x_{b} - x_{a}) usw...}. [/mm]
Vielleicht hab ich es falsch abgeschrieben aber eigentlich ist es egal, welchen Punkt ich als [mm] x_{a} [/mm] und welchen als [mm] x_{b} [/mm] festlege, oder?

Bezug
                        
Bezug
Höhenberechung im Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 So 09.10.2005
Autor: Sigrid

Hallo flowster

> Deine Rechnung scheint plausibel und ich kann sie
> nachvollziehen, aber wenn du die Länge der Strecke
> berechnest rechnest du  [mm]\wurzel{(x_{a} - x_{b}) usw...}[/mm] und
> nicht [mm]\wurzel{(x_{b} - x_{a}) usw...}.[/mm]
> Vielleicht hab ich es falsch abgeschrieben aber eigentlich
> ist es egal, welchen Punkt ich als [mm]x_{a}[/mm] und welchen als
> [mm]x_{b}[/mm] festlege, oder?

Da du die Differenzen ja quadrierst, ist die Reihenfolge egal.

Allgemein gilt:

(a - [mm] b)^2 [/mm] = (b - [mm] a)^2 [/mm]

Gruß
Sigrid

Bezug
                                
Bezug
Höhenberechung im Dreieck: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 So 09.10.2005
Autor: flowster

Okay, vielen Dank ^^
Mal hoffen das es morgen klappt.

Bezug
                        
Bezug
Höhenberechung im Dreieck: Reihenfolge egal
Status: (Antwort) fertig Status 
Datum: 18:16 So 09.10.2005
Autor: Loddar

Hallo Flowster!


> Vielleicht hab ich es falsch abgeschrieben aber eigentlich
> ist es egal, welchen Punkt ich als [mm]x_{a}[/mm] und welchen als
> [mm]x_{b}[/mm] festlege, oder?

Die Formel für den Abstand zweier Punkte lautet ja:

$d(P;Q) \ = \ [mm] \wurzel{\left(x_P-x_Q\right)^2 + \left(y_P-y_Q\right)^2 \ }$ [/mm]


Durch die beiden Quadrate unter der Wurzel ist es egal, welchen Punkt ich als $P_$ und welchen als $Q_$ festlege, da ja gilt:

[mm] $(a-b)^2 [/mm] \ = \ [mm] \left[(-1)*(-a+b)\right]^2 [/mm] \ = \ [mm] (-1)^2 [/mm] * [mm] (b-a)^2 [/mm] \ = \ [mm] (+1)*(b-a)^2 [/mm] \ = \ [mm] (b-a)^2$ [/mm]


Auch von der Anschauung her ist es doch egal, ob ich von Berlin nach München fahre, oder von München nach Berlin - die Länge der Strecke ist und bleibt dieselbe.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]