matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieHöhe u.a. im Dreieck bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Höhe u.a. im Dreieck bestimmen
Höhe u.a. im Dreieck bestimmen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhe u.a. im Dreieck bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Mi 02.01.2008
Autor: broken_eiyce

Aufgabe
Wir betrachten ein Dreieck in der Ebene, dessen Seiten durch die Geradengleichungen
2x - y +3 = 0
x - 2y + 1 = 0 und
2x +3y +1 = 0

gegeben sind. Berechnen Sie für die Höhe des Dreiecks, die senkrecht auf der dritten Seite steht, die Geradengleichung und die Länge der Höhe.

Ich hab mir zu der Aufgabe überlegt, dass ich zunächst die Eckpunkte des Dreiecks bestimme, indem ich dir Geradengleichungen paarweise gleichsetze.

Demzufolge:

A= [mm] (-\bruch{5}{3} [/mm] | [mm] -\bruch{1}{3}) [/mm]
B= [mm] (-\bruch{5}{7} [/mm] | [mm] \bruch{1}{7}) [/mm]
C= [mm] (-\bruch{5}{4} [/mm] | [mm] \bruch{1}{2}) [/mm]

Um an die Höhe zu kommen, brauche ich die Steigung der dritten Seite. An die wäre [mm] \bruch{3}{2}. [/mm]

Aber ab hier klemmt es dann.
Mir fehlt doch jetzt etwas mit dem ich arbeiten kann oder?


(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt)

        
Bezug
Höhe u.a. im Dreieck bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 02.01.2008
Autor: leduart

Hallo
die Steigung der dritten Seite ist -2/3, deshalb die der Höhe dann 3/2. ich denk da hast du dich nur verschrieben.
jetzt hast du noch den Schnittpkt. der 2 anderen Seiten, also einen Punkt der Geraden und ihre Steigung. Daraus dann die Geradengleichung.
Gruss leduart

Bezug
                
Bezug
Höhe u.a. im Dreieck bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Sa 05.01.2008
Autor: broken_eiyce


> Hallo
>  die Steigung der dritten Seite ist -2/3, deshalb die der
> Höhe dann 3/2. ich denk da hast du dich nur verschrieben.
>  jetzt hast du noch den Schnittpkt. der 2 anderen Seiten,

Wäre ja dann der Punkt [mm] (-\bruch{5}{47}| \bruch{1}{7}) [/mm]
Wenn ich m = [mm] -\bruch{2}{3} [/mm] nehme komme ich auf folgendes:

y = [mm] -\bruch{2}{3} [/mm] (x + [mm] \bruch{5}{7}) [/mm] + [mm] \bruch{1}{7} [/mm]
= [mm] -\bruch{2}{3}x [/mm] + [mm] \bruch{1}{3} [/mm]

Ist das jetzt wirklich schon die gesuchte Geradengleichung?

Und wie komm ich jetzt auf die Länge der Höhe?


Bezug
                        
Bezug
Höhe u.a. im Dreieck bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Sa 05.01.2008
Autor: leduart

Hallo
Die Steigung der dritten Seite : 2x+3y+1=0 y=-2/3x-1/3 ist -2/3.
Die Höhe hat deshalb die Steigung 3/2 und sie geht durch den Schnittpkt der 2 anderen seiten, dein Punkt A.
Deshalb ist dein Ergebnis falsch.
Wenn du die richtige Gerade durch (-5/3,-1/3) steigung 3/2 hast musst du sie mit der dritten Seite schneiden, also mit y=-2/3x-1/3, dann den Abstand dieses Punktes P von A ausrechnen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]