matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelHöhe einer schiefen Pyramide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Höhe einer schiefen Pyramide
Höhe einer schiefen Pyramide < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhe einer schiefen Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 So 17.01.2010
Autor: senf

Ich habe diese Frage auch hier gestellt: http://matheplanet.de/

Für einen Entwurf einer Skulptur muss ich bis Ende diesen Monats die Höhe einer dreiseitigen Pyramide wissen. Die Kantelängen weiß ich. Natürlich könnte ich dazu auch ein Modell in gleicher Größe anfertigen, ich möchte die Höhe aber gern möglichst genau wissen.

Das Dreieck, das die Grundfläche bildet hat die Winkel 20°, 60° und 100°. Die Proportionen der Kanten sind sin20° : sin60° : sin80°
Das entspricht den Verhältnissen einer Seite, einer mittellangen Diagonalen und einer langen Diagonalen in einem Neuneck.

Die Koordinaten der Ecken A,B,C der Grundfläche mit den Koordinaten
lege ich so fest:
A=(0,0,0)
B=(sin80°,0,0)
C=((cos20°)/(sin60°),(sin20°)/(sin60°))

D.h. die Kantenlängen sind:
AB=sin80°
AC=sin60°
BC=sin20°

Und das sind die Längen der Seitenkanten, die von der Spitze D ausgehen:
AD=sin60°
BD=sin60°
CD=sin80°

Die Pyramide ist rotationssymmetrisch. Die Achse geht durch die Mitten der Kanten AB und CD. Die Dreiecke ABC und ABD sind kongruent. Die gleichschenkligen Dreiecke ADC und BDC ebenso.

Wer kann und möchte mir sagen, wie die Höhe errechnet werden kann?

Viele Grüße
Senf



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Höhe einer schiefen Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 So 17.01.2010
Autor: abakus


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Für einen Entwurf einer Skulptur muss ich bis Ende diesen
> Monats die Höhe einer dreiseitigen Pyramide wissen. Die
> Kantelängen weiß ich. Natürlich könnte ich dazu auch
> ein Modell in gleicher Größe anfertigen, ich möchte die
> Höhe aber gern möglichst genau wissen.
>  
> Das Dreieck, das die Grundfläche bildet hat die Winkel
> 20°, 60° und 100°. Die Proportionen der Kanten sind
> sin20° : sin60° : sin80°
>  Das entspricht den Verhältnissen einer Seite, einer
> mittellangen Diagonalen und einer langen Diagonalen in
> einem Neuneck.
>  
> Die Koordinaten der Ecken A,B,C der Grundfläche mit den
> Koordinaten
>  lege ich so fest:
>  A=(0,0,0)
>  B=(sin80°,0,0)
>  C=((cos20°)/(sin60°),(sin20°)/(sin60°))
>  
> D.h. die Kantenlängen sind:
> AB=sin80°
>  AC=sin60°
>  BC=sin20°
>  
> Und das sind die Längen der Seitenkanten, die von der
> Spitze D ausgehen:
>  AD=sin60°
>  BD=sin60°
>  CD=sin80°
>  
> Die Pyramide ist rotationssymmetrisch. Die Achse geht durch
> die Mitten der Kanten AB und CD. Die Dreiecke ABC und ABD
> sind kongruent. Die gleichschenkligen Dreiecke ADC und BDC
> ebenso.
>
> Wer kann und möchte mir sagen, wie die Höhe errechnet
> werden kann?

Hallo,
Wenn du alle Längen kennst, kannst du das MBSpatprodukt verwenden.
Gruß Abakus

>
> Viele Grüße
>  Senf
>  
>  


Bezug
                
Bezug
Höhe einer schiefen Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 18.01.2010
Autor: senf

Hallo Abakus,
danke für deine Antwort. Aber um das Spatprodukt bilden zu können reichen mir doch die Längen der Kanten allein nicht aus, oder? Ich muss auch die Richtungen von mindestens drei Kanten wissen, die nicht alle in einer Ebene liegen dürfen.
Woher weiß ich denn die?
Viele Grüße
Senf

Bezug
                        
Bezug
Höhe einer schiefen Pyramide: Andere Idee
Status: (Antwort) fertig Status 
Datum: 18:50 Mi 20.01.2010
Autor: MathePower

Hallo senf,


> Hallo Abakus,
>  danke für deine Antwort. Aber um das Spatprodukt bilden
> zu können reichen mir doch die Längen der Kanten allein
> nicht aus, oder? Ich muss auch die Richtungen von
> mindestens drei Kanten wissen, die nicht alle in einer
> Ebene liegen dürfen.
>  Woher weiß ich denn die?


Der Punkt C muß doch so lauten:

C=((cos20°)/(sin60°),(sin20°)/(sin60°),0)


Naheliegend ist, hier die Kugeln um A,B,C zu betrachten,
und diese zum Schnitt zu bringen. Dann erhältst Du
die Spitze D.


>  Viele Grüße
> Senf


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]